

Reinsurance Profit Share

Damian Thornley

What is reinsurance profit share?

- Profit share = X% (Y% P − C − LCF)
 - X sometimes tiered according to P
 - Importantly, P is net of reinsurance commissions
 - LCF ~ losses carried forward, > Y% P

Motivation

- Wanted to investigate different behaviour of Group Life vs Reinsurance profit share;
 - Losses carried forward impact
 - Initial financing in reinsurance
 - Timeframe, GL 3-years vs Reinsurance "natural expiry"

Reinsurance vs Group Life premiums, claims

Results

- Table from paper (section 4.2.2)
 - Shows the adjustment to non-par rates required to achieve the same ROC after PC distribution
 - To nearest 0.5%

Profit share terms (X% / Y%)	60/75	60/80	60/85
adjustment required to non-	+1.5%	+2.0%	+3.5%
par reinsurance rates			

Results: profit share behaviour

Average profit share distributed, 100/80 formula, 230

Results: profit share behaviour

Probability distribution frequency of {Year 10 PC distribution}, 230 simulations, 100/80 formulae

\$ amount of PC distribution

Results

- PC terms depend on number of policies written and sum insured variation.
- Example of different starting assumptions;

	Business type		
	as from Paper	"Low risk"	
Num. policies pa	5,000	10,000	
Ages	varies from 25-60	single age ~ 40	
Sum insured	varies, \$0-\$2M	\$400,000	
Reins, arrangement	surplus 300K	quota-share	
Other assumptions	same		
estimated premium loading required	to place reinsurer in unchanged situat	ion for 100/80 profit share	
- stochastic risk only*	approx 3%	< 0.5%	
- including systemic risk**	> 3%	1%	
* means no change to BE assumptions across life of the projection			
** means that mortality table varies a	cross future durations with a random	walk	

Profit share iso-cost curve

Profit share iso-cost curve

Practical considerations

- Practical difficulty for estimating PC costs
 - long time span means that systemic risk must be addressed
 - Model for systemic risk in the Paper is too simplistic
- Measurement basis
 - I used equal ROC before / after PC
 - % of premium is an alternative

Return on capital measurement

- Value to s/h = PV (P+I-B-E) COC PV(Profit share)
- In my model, change to profit share loading impacts on terms 1 and 2 with different sensitivity.
 - Higher PC loading reduces COC and dampens the 'cost' of profit share
- Table shows estimated required loadings and PC % of Prem

Table 4.2.2, with PC distributions as % of Premium					
	60/75	60/80	60/85		
Loading	1.5%	2.0%	3.50%		
% of Prem	3.0%	3.8%	6.5%		

LCF impact

- Wanted to check the 'power' of the Losses carried forward term
 - Intuitively, if LCF is very powerful, a deterministic approximation would serve us well because option volatility will be 'ironed out' by LCF

		+2% prem loading to
ltem	Zero PC	pay for 60/80
PV(P)	5,520	5,630
PV(B)	-4,639	-4,639
PV(E)	-275	-281
COC	-606	-504
PV(PC Cost)	0	-207
TOTAL	0	0

LCF check....

- PC distributed = 60% x ((80% x 5630) 4639)
 = 60% x (-ve item)....run time error!
- On deterministic basis, no distribution since E{PV(C/P)} = 82% from the table above
 - Greater than the 'strike price' for the PC option.
- Therefore, we can say that despite the LCF, the 'optionality' is still important
 - This is partly because the LCF is retrospective only there's usually no clawback of physical cash once a distribution is paid.

Conclusion

- PC terms offered need to be customised to the portfolio and the risk type
- Difficulty of estimating systemic risk
- Terms offered, low / high vs high / low
 - -50 / 85 vs 100 / 75
- LCF is strong, but not all-conquering