

Our New 'Old' Problem – Pricing Longevity Risk in Australia

Patricia Berry, Lawrence Tsui (& Gavin Jones)

© < copyright Berry, Tsui, Jones>

Agenda

- Current mortality levels
 - Population
 - Sub groups (UK, US and Aust)
- Future mortality modelling
 - Forecasting methods
 - Historical improvements and extrapolation models
 - Model, parameter and statistical variability

Male Period Life Expectancy at age 65

- Aust one of the fastest, increasing by 2.5 mths p.a.
- Since 1970s reduction in smoking and medical advances in cardio-vascular diseases

Female Period Life Expectancy at age 65

- Slower growth than males, increasing by 1.9 mths p.a.
- Smoking and cardio-vascular diseases less relevant

UK Male Life Expectancy at 65

- ONS Longitudinal Study
- Gap of 4 yrs+ => 10% annuity cost
- Widening gaps

UK Annuities by Postcode

- ONS life
 expectancies by
 local authority
 - LE at 65 from13.8 yrs to 23.1yrs
- Annuities vary by 4%+ due to postcode

UK Annuitant Mortality vs. Population

- At younger ages– employmentand self select
- Lighter mortality than the Self Administered Pension Schemes (SAPS)

US Male Annuitant Mortality vs. Popn

- A voluntary market
- Pivot tables provided in SOA study
- Self-select evident
- Females similar

Australia Experience

- Public sector scheme pensioners 2005-07
 - shape similar to UK annuitants
- Immediate annuitants 1998-99
 - flatter shape

Current Mortality - Summary

- Aust post retirement life expectancy growing rapidly
- Socio-economic class strong predictor of longevity
 - postcode and benefit amount
- Other factors Annuity buying behaviour, employment status etc
- Widening gaps

Future Mortality Modelling

- Extrapolation
 - time series and other statistical models
- Explanatory / Process-Based
 - extrapolation by cause and cause-elimination
- Expert Opinion / Expectation
 - genetics and biological processes

Historical Improvements - Male

Clear period (vertical) and cohort (diagonal) effects

Historical Improvements - Female

Improvements generally lower, cohort effect weaker

Mortality Models

Lee-Carter

$$\log \mu_{x,t} = a_x + b_x p_t + \varepsilon_{x,t}$$

Currie Age-Period-Cohort

$$\log \mu_{x,t} = a_x + p_t + c_{t-x} + \epsilon_{x,t}$$

Age effects $a_x b_x$

Period effects p_t r_t

Cohort effects c_{t-x}

Random error $\varepsilon_{x,t}$

• Cairns-Blake-Dowd (CBD) with Cohort logit $q_{x,t} = p_t + r_t (x - \bar{x}) + c_{t-x} + \varepsilon_{x,t}$

Lee-Carter Model (M1)

No cohorts, improvements vary by attained age only

Currie APC Model (M3)

Strong, dominant, persisting cohort effect

CBD with Cohort Model (M6)

Weaker cohort effect, diminishing over time

Model, Parameter, Statistical Variability

 Relative strength of modelled period / cohort effects reflected in varying mortality improvement by age

Model, Parameter, Statistical Variability

 Variation between models can exceed statistical variability within model

Model, Parameter, Statistical Variability

Future Mortality - Summary

- Use a combination of extrapolation, explanation, expert opinion
- Strong evidence of cohort effect for 1925-35 males, weaker for females
- Similarly plausible models can give very different answers
- Important to understand the possible range of outcomes

Conclusions

- Large differences in mortality between sub-segments of the population
- Large differences in projected future mortality depending on model chosen, period of fit and statistical volatility
- No single "correct" approach for longevity pricing - quantify uncertainty based on a range of plausible outcomes