## XIth Accident Compensation Seminar 2007



### Statistical Case Estimation for Long Term Claimants

- Uncovering Drivers of Long Term Claims Cost in Accident Compensation

**Presented by Mitchell Prevett and David Gifford** 



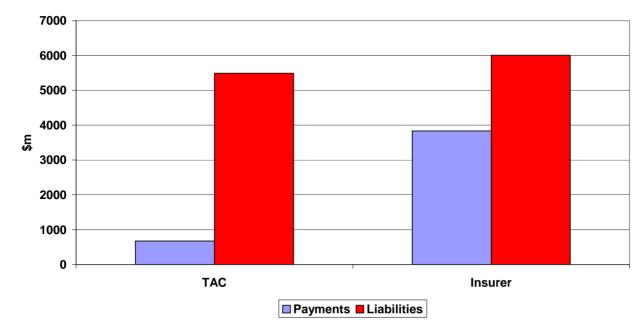
- 1 Introduction and Background
- 2 Approach
- 3 Key Insights
- 4 Applications and Benefits
- 5 Summary

### **1 - Introduction and Background**

Aim

- Investigate the drivers behind long term care costs for long term claimants within the TAC
- Used to assist reserving by linking to drivers
- Assists claims management via case by case comparison Statistical Case Estimation
- Individual estimates of future claims related costs
- Predicted via statistical model using individual characteristics
- Not just a black box

# 1 - Introduction and Background


Background to TAC

- provides no-fault cover for injuries resulting from motor vehicle accidents
- Common Law benefits also paid but only for Eco Loss and General Damages
- All treatment benefits paid only on periodic basis, resulting in significant liabilities relative to claim payments

#### **1 - Introduction and Background**

#### Long Term Nature of Liabilities

Annual Payments and OSC Liabilities for TAC and Large General Insurer



• TAC's liabilities are 8 times annual payments

• Compare with typical general insurer where ratio is 1.5 Source: TAC and Insurer annual reports

#### **1 - Introduction and Background**

- Long Term Claimants
  - Community Support Division
  - Primarily neurological impairments and spinal injuries (quadriplegics and paraplegics)
- "Attendant Care and Substitutables"
  - Home based care
  - Group homes and nursing homes
  - Payments for Community Integration
- Approach is not specific to this definition of claimants or these payments.
- Other payments in respect of Long Term claimants are relatively significant and could also be modelled

### 2 - Approach

Considerations for SCE model design

- Capture the material drivers
- Transparent we can see how these drivers effect the reserves
- Balance the stability with predictiveness of drivers
- Stable when experience is stable
- Responsive when experience is changing
- Identify superimposed inflation and trends in claim drivers (where they exist)

### 2 - Approach

Static and Dynamic Drivers

- 1. Static
  - Largely known when the claim is reported and unchanging
  - E.g. gender, date of accident
- 2. Dynamic foreseeable
  - Will change in the future in a foreseeable way
  - E.g. age of the claimant, duration of the claim since injury
- 3. Dynamic stochastic
  - Will change over the lifetime of the claim with a stochastic or random element
  - E.g. litigation status, injury severity, care needs etc.
  - Often the most predictive drivers
  - Will result in biased predictions if used as static drivers hence we need to forecast these drivers

### 2 - Approach

Data Available for Modelling

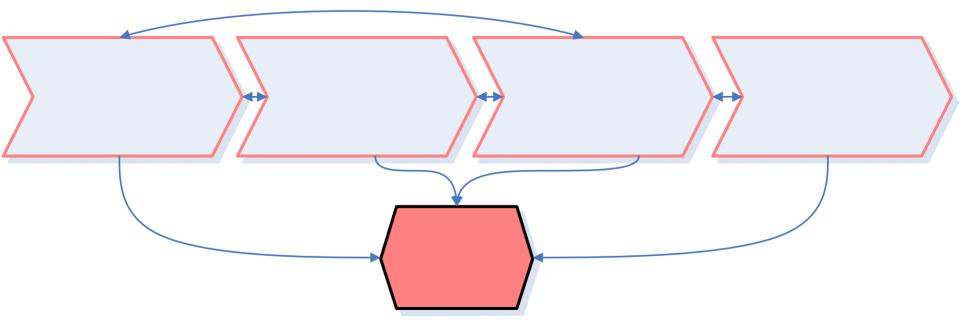
- 15 to 20 potential predictors were available for modelling (right)
- Historical annual payments over 10 years for care and therapy

#### Data items were considered for:

- Quality and appropriateness
- Availability of history for each data item
- Extent to which they are dynamic

| Age                     | Functional code        |
|-------------------------|------------------------|
| Care payments           | Mobility code          |
| Duration since accident | Service profile        |
| FAM                     | Days since discharge   |
| FIM                     | Residential status     |
| Impairment range        | Days in accommodation  |
| Injury class            | Days in attendant care |
| Service year            | Gender                 |
| Therapy payments        | Year of accident       |

### 2 - Approach


**Overall Approach** 

- 1. Transition model to forecast dynamic drivers
- 2. Forecast future claim cash flows **with** past payment levels, where appropriate (Rate of Change increase in payments)
- 3. Forecast future claim cash flows **without** past payment levels for other claims (Payments Per Active Claim)
- 4. Combine the probability of each future state with the forecasted cashflows to arrive at probability weighted expected payments.
- 5. Inflation and discounting is applied and the sum across all future periods is the SCE per claim.

### 2 - Approach

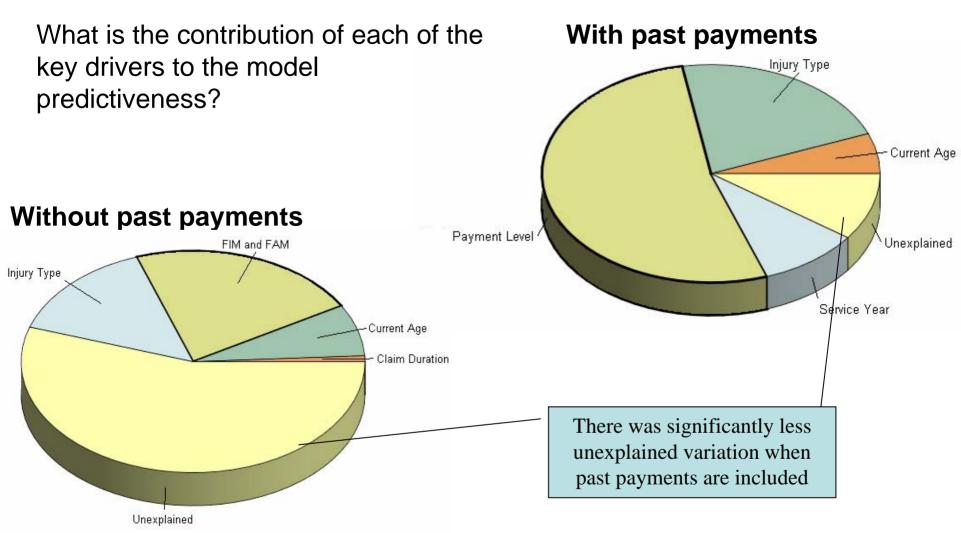
**Forecasting Dynamic Drivers** 

- Create claim states which capture the information in the dynamic drivers
- Use a transition model to forecast these states (using GLMs)
- The states selected leveraged past care and therapy payment status



### 2 - Approach

**Forecasting Cashflows** 


Approach 1 - Rate of Change in Payments

- What? For future Active High payments, applied to claims currently in the Active High state
- Why? Incorporates the best predictor of future payment levels i.e. past payment levels.
- Other drivers include age and injury type

Approach 2 - Payments Per Active Claim (PPAC)

- What? For future Active High and Active Low payments, applied to claims currently NOT in the Active High state
- Why? Inactive claims will have \$0 payments and hence a Rate of Change is not sensible
- Why? Currently Active Low claims will have highly variable Rates of Change and hence the PPAC is more appropriate.
- Other drivers include injury type, age, and impairment level

#### **3 - Key Insights**



**XIth Accident Compensation Seminar 2007** 

### 3 - Key Insights

#### **Significant Drivers**

Institute of Actuaries of Australia

- Key drivers are included the models where significant
- We also look at which variables are not significant?

#### **Quantification of Drivers**

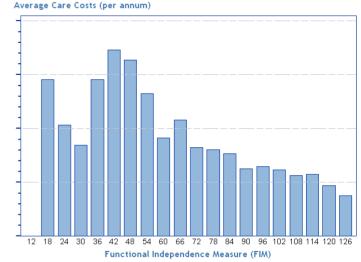
 e.g. "Young claimants on high levels of Attendant care are up to 3 times more likely NOT to continue at these high levels"

| Variable                | Rate of<br>Change<br>model | Active High<br>payment<br>model | Active Low<br>payment<br>model | Transition<br>models |
|-------------------------|----------------------------|---------------------------------|--------------------------------|----------------------|
| Age                     | ~                          | ~                               | ~                              | ~                    |
| Care Payments           | ✓                          | ×                               | ×                              | ~                    |
| Duration since accident | ×                          | ×                               | ×                              | ~                    |
| FAM                     | ×                          | ×                               | ×                              | ×                    |
| FIM                     | ×                          | ×                               | ×                              | ×                    |
| Impairment range        | ×                          | ~                               | <b>v</b>                       | ×                    |
| Injury class            | ~                          | ~                               | ~                              | ~                    |
| Therapy payments        | ×                          | ×                               | ×                              | ~                    |

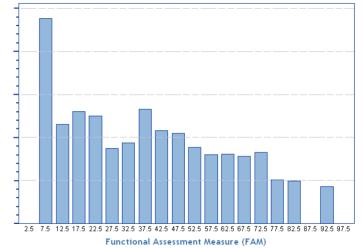
| Variable               | Rate of<br>Change<br>model | Active High<br>payment<br>model | Active Low<br>payment<br>model | Transition<br>models |
|------------------------|----------------------------|---------------------------------|--------------------------------|----------------------|
| Functional code        | ×                          | ×                               | ×                              | ×                    |
| Mobility code          | ×                          | ×                               | ×                              | ×                    |
| Service profile        | ×                          | ×                               | ×                              | ×                    |
| Days since discharge   | ×                          | ×                               | ×                              | ×                    |
| Residential status     | ×                          | ×                               | ×                              | ×                    |
| Days in accommodation  | ×                          | ×                               | ×                              | ×                    |
| Days in attendant care | ×                          | ×                               | ×                              | ×                    |
| Gender                 | ×                          | ×                               | ×                              | ×                    |
| Year of accident       | ×                          | ×                               | ×                              | ×                    |

XIth Accident Compensation Seminar 2007

#### **3 - Key Insights**


#### Extension - Incorporating FIM and FAM

- Ratings of the independence and function of seriously injured people in performing daily activities
- Not recorded across all claims and hence could not be used in the main SCE model
- We re-constructed the Rate of Change and PPAC models with FIM and FAM added


#### Findings

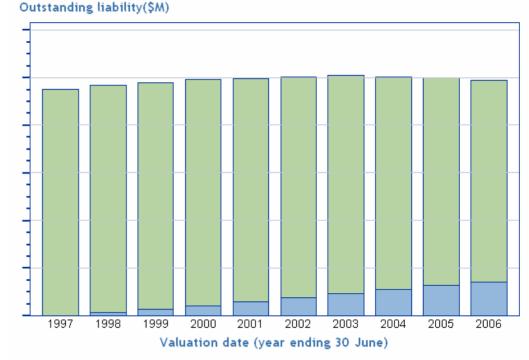
Institute of Actuaries of Australia

- When added, FIM and FAM are very significant predictors
- There is much less reliance on injury type when FIM and FAM are known



#### Average Care Costs (per annum)




### **4 - Applications and Benefits**

Reserving diagnostic -Incurred Cost Development

 Reserve levels appear to develop consistently for the SCE model

How have we used it?

- Supporting model for the main valuation
- Reserves were broadly consistent with the main valuation model
- Some insights from the SCE model were used to improve the main valuation model



Key 🔲 Cumulative payments from 1997 🔲 Statistical case estimates

### 4 - Applications and Benefits

- Need to note long term nature of attendant care benefits and be aware of systemic factors in setting reserves such as
  - Changes in expectations of what care is "reasonable"
  - Change in provision of care from family (unpaid) to paid care
  - Impact of ageing population
  - Availability of care and impact of availability on the cost of attendant care
- Also need to be aware of past changes in legislative and claims management environment
- Even bearing these uncertainties in mind, a sound statistical approach reduces variation from known factors (i.e. those observed in the data)

### **4 - Applications and Benefits**

**Claims management** 

- Construct a tool to estimate the expected attendant care costs for claimants just leaving hospital.
- Provides a guidance and benchmarks as to the levels of care required.
- Compare with estimates placed on claims by claims management staff

| Claim characteristics                |             |                                                                 |            |
|--------------------------------------|-------------|-----------------------------------------------------------------|------------|
| Injury class (expanded)              | Sev ABI - 1 | Current Transition State Active Low                             |            |
| Current development year             | 2           | Active High Expected Payment                                    |            |
| Current age                          | 45          | Predicted annual percentage change of payment level             | N/A        |
| Previous year payments (ATC and ACC) | 5,000       | Predicted annual payment level for remaining in Active High     | \$ 110,032 |
| Current service year                 | 2006        | Predicted transition probability of transition to Active High   | 20.9%      |
| Inpairment % range                   | 50%+        |                                                                 |            |
|                                      |             | Active Low Expected Payment                                     |            |
|                                      |             | Predicted annual payment level for claim in Active Low          | \$ 16,853  |
|                                      |             | Predicted transition probability of transitioning to Active Low | 70.8%      |
|                                      | E C         |                                                                 |            |

Expected Payment in the Next Service Year

34.883

#### 5 - Summary

The key benefits of the model were:

- Uncovering claims cost drivers
- Design an approach based on these drivers
- Linking these drivers to the reserves
- Applications in claims management