XIth Accident Compensation Seminar 2007

Institute of Actuaries of Australia

Combining GLM and datamining techniques for modelling accident compensation data

Peter Mulquiney

Introduction

- Accident compensation data exhibit features which complicate loss reserving and premium rate setting
 - Speeding up or slowing down of payment patterns
 - Abrupt changes in trends due to legislative changes
 - Changes in the profile of claims
 - Other changes which emerge as superimposed inflation
- Complicated structure can be modelled with GLMs
 - structure chosen in an *ad hoc* manner
 - process can be laborious and can be fallible

Introduction

- Alternative: Data mining techniques
 - Artificial Neural Networks
 - CART, MARS etc
- Advantages:
 - flexible architecture can fit almost any data structure
 - model fitting is largely automated

Overview

- Examine general form of model of claims data
- Examine the specific case of a **GLM** to represent the data
- Consider how the **GLM structure** is chosen
- Introduce and discuss Artificial Neural Networks (ANNs)
- Consider how these may assist in formulating a GLM

Model of claims data

General form of claims data model

 $Y_i = f(X_i; \beta) + \varepsilon_i$

- Y_i = some observation on claims experience
- β = vector of parameters that apply to all observations
- X_i = vector of attributes (covariates) of i-th observation
- ε_i = vector of centred stochastic error terms

Model of claims data

General form of claims data model

 $Y_i = f(X_i; \beta) + \varepsilon_i$

- Y_i = some observation on claims experience
- β = vector of parameters that apply to all observations
- X_i = vector of attributes (covariates) of i-th observation
- ϵ_i = vector of centred stochastic error terms
- Examples
 - Y_i = Y_{ad} = paid losses in (a,d) cell
 - » a = accident period
 - » d = development period
 - Y_i = cost of i-th completed claim

Examples (cont)

• Y_{ad} = paid losses in (a,d) cell • $E[Y_{ad}] = \beta_d \Sigma_{r=1}^{d-1} Y_{ar}$ (chain ladder)

Examples (cont)

- Y_{ad} = paid losses in (a,d) cell
 E[Y_{ad}] = β_d Σ_{r=1}^{d-1} Y_{ar} (chain ladder)
- $Y_i = \text{cost of i-th completed claim}$
 - Y_i ~ Gamma
 - $E[Y_i] = \exp [\alpha + \beta t_i]$

where

- » a_i = accident period to which i-th claim belongs
- » t_i = operational time at completion of i-th claim
 - = proportion of claims from the accident period a_i completed before i-th claim

Examples of individual claim models More generally

 $E[Y_i] = \exp \{function of operational time\}$

Examples of individual claim models

- More generally
 - E[Y_i] = exp {function of operational time}
 - + function of accident period (legislative change)}

Examples of individual claim models

- More generally
 - E[Y_i] = exp {function of operational time}
 - + function of accident period (legislative change)}
 - + function of completion period (superimposed inflation)}

Examples of individual claim models

- More generally
 - E[Y_i] = exp {function of operational time}
 - + function of accident period (legislative change)}
 - + function of completion period (superimposed inflation)}

+ joint function (interaction) of operational time & accident period (change in payment pattern attributable to legislative change)}

Examples of individual claim models

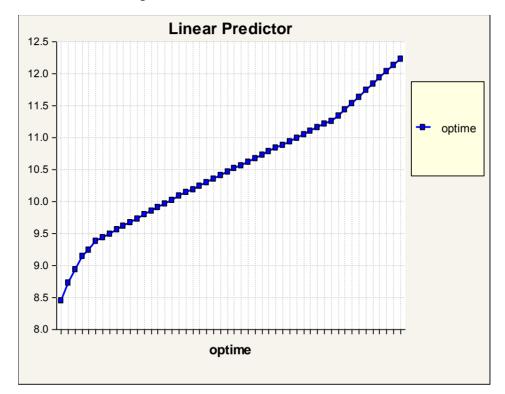
- Models of this type may be very detailed
- May include
 - Operational time effect (payment pattern)
 - Seasonality
 - Creeping change in payment pattern
 - Abrupt change in payment pattern
 - Accident period effect (legislative change)
 - Completion quarter effect (superimposed inflation)
 - Variations of superimposed inflation with operational time

Choosing GLM structure

- Typically largely ad hoc, using
 - Trial and error regressions
 - Diagnostics, e.g. residual plots
- Example:
 - Modelling 60,000 Auto Bodily Injury claims
 - Model of the cost of completed claims

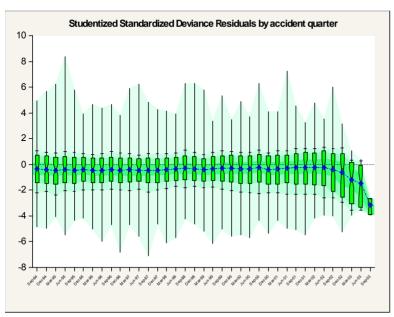
Choosing GLM structure

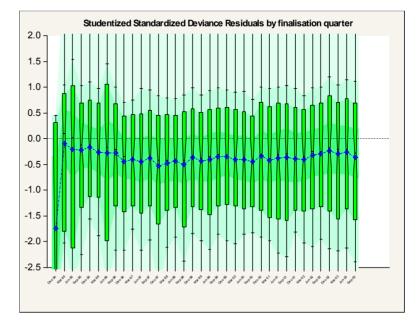
• First fit just an operational time effect



Choosing GLM structure

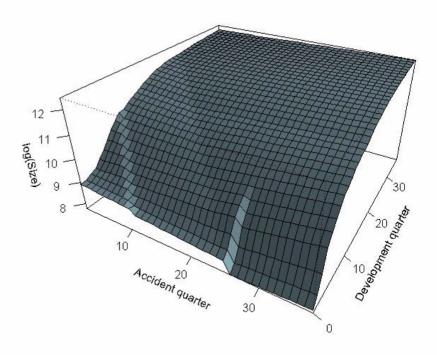
- But there appear to be unmodelled trends by
 - Accident quarter
 - Completion (finalisation) quarter





Choosing GLM structure

- Final model has terms for:
 - Age of claim
 - Seasonality
 - Accident quarter – Change in Scheme rules
 - Change in age of claim effect with change in Scheme rules
 - Superimposed inflation
 - Varying with age of claim



Choosing GLM structure

- Structure identified in ad hoc manner
 - Trial and error regressions
 - Diagnostics, e.g. residual plots
- More rigorous approach desirable

• Can we use ANN to do it better?

Introduction to ANN

- The ANN Regression Function
 - Start with vector of P inputs $X = \{x_p\}$
 - Create hidden layer with M hidden units
 - Make M linear combinations of inputs

$$h_m = \sum_p w_{mp} x_p$$

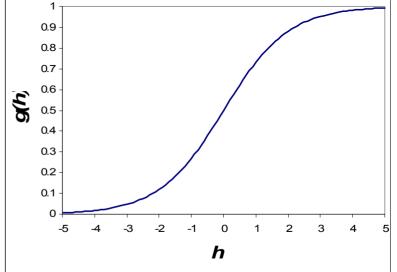
• Linear combinations then passed through layer of activation functions $g(h_m)$

$$Z_m = g(h_m) = g(\sum_p w_{mp} x_p)$$

Introduction to ANN

Activation function
 Usually a sigmoidal curve

$$g(h) = \frac{1}{1 + e^{-h}}$$



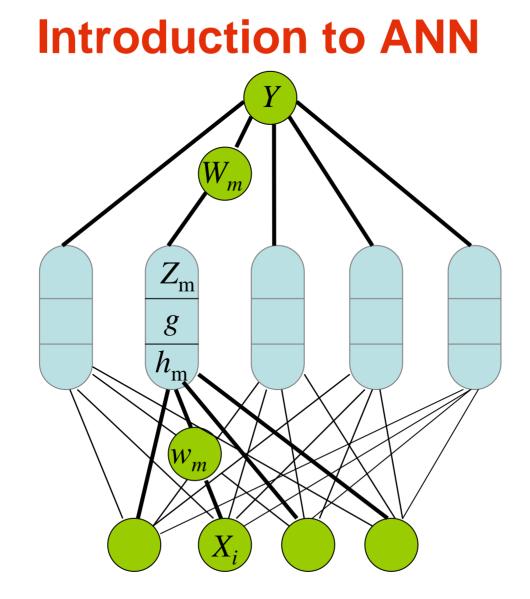
- Function \Rightarrow introduces non-linearity to model \Rightarrow keeps response bounded

Introduction to ANN

• Y is then given by a linear combination of the outputs from the hidden layer

$$Y = \sum_{m} W_{m} Z_{m} = \sum_{m} W_{m} g\left(\sum_{p} W_{mp} X_{p}\right)$$

- This function can describe any continuous function
- 2 hidden layers \Rightarrow ANN can describe **any** function



Training an ANN

• Weights are usually determined by minimising the least-squares error

$$Err = \frac{1}{2} \sum_{i=1}^{N} (y_i - f(X_i))^2$$

Weight decay penalty function stops overfitting

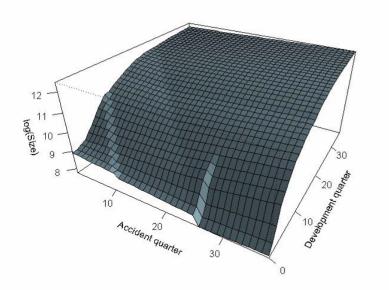
$$Err + \lambda (\sum_{m} W_{m}^{2} + \sum_{m} \sum_{p} W_{mp}^{2})$$

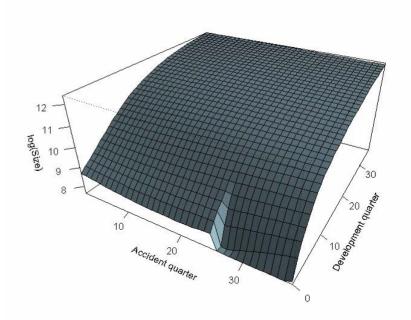
- Larger $\lambda \Rightarrow$ smaller weights
- Smaller weights \Rightarrow smoother fit

Training of an ANN - Example

- Training data set: 70% of available data
- Test data set: 30% of available data
- Network structure:
 - Single hidden layer
 - 20 units
 - Weight decay λ =0.05
- These tuning parameters determined by crossvalidation
 - Prediction error in test data set

Comparison of GLM and ANN GLM • ANN



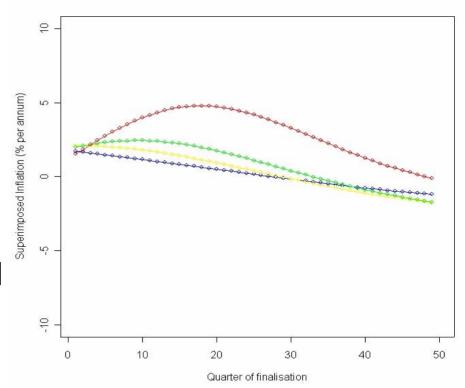


Average absolute error = \$33,777

Average absolute error = \$33,559

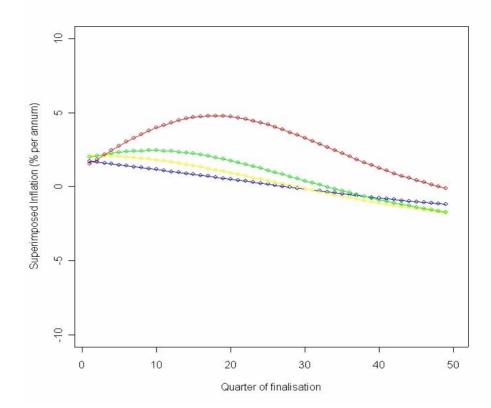
ANN forecasts

- 1D graphical plots to visualise data features
- e.g. historical and future superimposed inflation
 - Development quarter 10: red
 - Development quarter 20: green
 - Development quarter 30: yellow
 - Development quarter 40: blue
- ANN has searched out general form of past superimposed inflation (SI)
- Future SI determined by simple extrapolation



ANN forecasts

- Note forecast negative SI may be undesirable
- Need to consider expected claims environment in the future to determine appropriate SI forecast
- Because of problem of extrapolation with ANN usually necessary to supplement ANN forecast with a separate forecast of future SI.

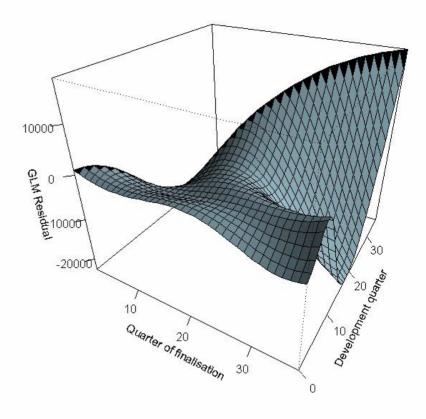


Combining ANN and GLM

- Often preferable to use a GLM over ANN due to model simplicity and transparency
 - ANN 181 parameters
 - GLM 13 pars
- May get best out of ANN and GLM if use in combination
- Use ANN as an automated tool to seeking out trends in data
 - Apply ANN to data set
 - Study trends in fitted model against a range of predictors or pairs of predictors using graphical means
- Use this knowledge to choose the functional forms to include in the GLM model

Combining ANN and GLM

- Ultimate test of the GLM is to apply ANN to its residuals, seeking structure
- There should be none
- The example indicates that there may the chosen GLM structure may:
- Over-estimate the more recent experience at the midages of claim
- Under-estimate it at the older ages



Conclusions

- GLMs provide a powerful and flexible family of models for claims data
- Complex GLM structures may be required for adequate representation of the data
 - The identification of these may be difficult
 - The identification procedures are likely to be *ad hoc*
- ANNs provide an alternative form of non-linear regression
 - These are likely to involve their own shortcomings if left to stand on their own (e.g. reduced transparency)
 - They may, however, provide considerable assistance if used in parallel with GLMs to identify GLM structure