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•
 

Accident compensation data exhibit features which 
complicate loss reserving and premium rate setting

•
 

Speeding up or slowing down of payment patterns
•

 
Abrupt changes in trends due to legislative changes

•
 

Changes in the profile of claims
•

 
Other changes which emerge as superimposed inflation

•
 

Complicated structure can be modelled
 

with GLMs
•

 
structure chosen in an ad hoc manner

•
 

process can be laborious and can be fallible 

Introduction



•
 

Alternative: Data mining techniques
•

 
Artificial Neural Networks

•
 

CART, MARS etc

•
 

Advantages:
•

 
flexible architecture can fit almost any data structure

•
 

model fitting is largely automated

Introduction



•
 

Examine general form of model of claims data
•

 
Examine the specific case of a GLM to represent 
the data 

•
 

Consider how the GLM structure is chosen
•

 
Introduce and discuss Artificial Neural Networks 
(ANNs)

•
 

Consider how these may assist in formulating a 
GLM

Overview



•
 

General form of claims data model
Yi

 

= f(Xi

 

; β) + εi

•
 

Yi

 

= some observation on claims experience
•

 
β = vector of parameters that apply to all observations

•
 

Xi

 

= vector of attributes (covariates) of i-th
 

observation
•

 
εi

 

= vector of centred
 

stochastic error terms

Model of claims data



•
 

General form of claims data model
Yi

 

= f(Xi

 

; β) + εi

•
 

Yi

 

= some observation on claims experience
•

 
β = vector of parameters that apply to all observations

•
 

Xi

 

= vector of attributes (covariates) of i-th
 

observation
•

 
εi

 

= vector of centred
 

stochastic error terms

•
 

Examples
•

 
Yi

 

= Yad
 

= paid losses in (a,d) cell
»

 
a = accident period

»
 

d = development period

•
 

Yi
 

= cost of i-th
 

completed claim

Model of claims data



•
 

Yad
 

= paid losses in (a,d) cell
•

 
E[Yad

 

] = βd

 

Σr=1
d-1

 
Yar

 

(chain ladder)

Examples (cont)



•
 

Yad
 

= paid losses in (a,d) cell
•

 
E[Yad

 

] = βd

 

Σr=1
d-1

 
Yar

 

(chain ladder)

•
 

Yi
 

= cost of i-th
 

completed claim
•

 
Yi

 

~ Gamma
•

 
E[Yi

 

] = exp [α+β
 

ti
 

]
where

»
 

ai

 

= accident period to which i-th
 

claim belongs
»

 
ti

 

= operational time at completion of i-th
 

claim
= proportion of claims from the accident period ai

 completed before i-th
 

claim

Examples (cont)



•
 

More generally
E[Yi

 

] =
 

exp {function of operational time}

Examples of individual claim 
models



•
 

More generally
E[Yi

 

] =
 

exp {function of operational time}
+ function of accident period (legislative change)}

Examples of individual claim 
models



•
 

More generally
E[Yi

 

] =
 

exp {function of operational time}
+ function of accident period (legislative change)}
+ function of completion period (superimposed 
inflation)}

Examples of individual claim 
models



•
 

More generally
E[Yi

 

] =
 

exp {function of operational time}
+ function of accident period (legislative change)}
+ function of completion period (superimposed 
inflation)}
+ joint function (interaction) of operational time & 
accident period (change in payment pattern 
attributable to legislative change)}

Examples of individual claim 
models



•
 

Models of this type may be very detailed
•

 
May include

•
 

Operational time effect (payment pattern)
•

 
Seasonality 

•
 

Creeping change in payment pattern
•

 
Abrupt change in payment pattern

•
 

Accident period effect (legislative change)
•

 
Completion quarter effect (superimposed inflation)

•
 

Variations of superimposed inflation with operational 
time

Examples of individual claim 
models



•
 

Typically largely ad hoc, using
•

 
Trial and error regressions

•
 

Diagnostics, e.g. residual plots

•
 

Example:
•

 
Modelling

 
60,000 Auto Bodily Injury claims

•
 

Model of the cost of completed claims

Choosing GLM structure



•
 

First fit just an operational time effect
Choosing GLM structure

Linear Predictor
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•
 

But there appear to be unmodelled
 

trends by
•

 
Accident quarter

•
 

Completion (finalisation) quarter

Choosing GLM structure

Studentized Standardized Deviance Residuals by accident quarter
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•
 

Final model has terms for:
•

 
Age of claim

•
 

Seasonality 
•

 
Accident quarter

–
 

Change in Scheme rules

•
 

Change in age of claim 
effect with change in 
Scheme rules

•
 

Superimposed inflation
–

 
Varying with age of claim

Choosing GLM structure



•
 

Structure identified in ad hoc manner
•

 
Trial and error regressions

•
 

Diagnostics, e.g. residual plots

•
 

More rigorous approach desirable

•
 

Can we use ANN to do it better?

Choosing GLM structure



•
 

The ANN Regression Function
–

 
Start with vector of P inputs X = {xp

 

}
–

 
Create hidden layer with M hidden units

•
 

Make M linear combinations of inputs

•
 

Linear combinations then passed through layer of 
activation functions g(hm

 

)

Introduction to ANN
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•
 

Activation function
–

 
Usually a sigmoidal

 
curve

–
 

Function ⇒ introduces non-linearity to model
⇒

 
keeps response bounded

Introduction to ANN
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•
 

Y is then given by a linear combination of the 
outputs from the hidden layer

•
 

This function can describe any continuous function

•
 

2 hidden layers ⇒ ANN can describe any function

Introduction to ANN
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Introduction to ANN
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•
 

Weights are usually determined by minimising
 

the 
least-squares error

•
 

Weight decay penalty function stops overfitting

–
 

Larger λ ⇒ smaller weights
–

 
Smaller weights ⇒ smoother fit

Training an ANN
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•
 

Training data set: 70% of available data
•

 
Test data set: 30% of available data

•
 

Network structure:
–

 
Single hidden layer

–
 

20 units
–

 
Weight decay λ=0.05

•
 

These tuning parameters determined by cross- 
validation
–

 
Prediction error in test data set

Training of an ANN - Example



•
 

GLM

Average absolute error 
= $33,777

Comparison of GLM and ANN
•

 
ANN

Average absolute error
= $33,559



•
 

1D graphical plots to visualise
 data features

•
 

e.g. historical and future 
superimposed inflation

•
 

Development quarter 10: red
•

 
Development quarter 20: green

•
 

Development quarter 30: yellow
•

 
Development quarter 40: blue

•
 

ANN has searched out general 
form of past superimposed 
inflation (SI)

•
 

Future SI determined by 
simple extrapolation

ANN forecasts



•
 

Note forecast negative SI 
may be undesirable

•
 

Need to consider expected 
claims environment in the 
future to determine 
appropriate SI forecast

•
 

Because of problem of 
extrapolation with ANN 
usually necessary to 
supplement ANN forecast 
with a separate forecast of 
future SI.

ANN forecasts



•
 

Often preferable to use a GLM over ANN due to model 
simplicity and transparency

•
 

ANN –
 

181 parameters
•

 
GLM –

 
13 pars

•
 

May get best out of ANN and GLM if use in combination
•

 
Use ANN as an automated tool to seeking out trends in data

•
 

Apply ANN to data set
•

 
Study trends in fitted model against a range of predictors or pairs 
of predictors using graphical means

•
 

Use this knowledge to choose the functional forms to 
include in the GLM model

Combining ANN and GLM



•
 

Ultimate test of the GLM is to 
apply ANN to its residuals, 
seeking structure

•
 

There should be none
•

 
The example indicates that 
there may the chosen GLM 
structure may:

•
 

Over-estimate the more 
recent experience at the mid-

 ages of claim
•

 
Under-estimate it at the older 
ages

Combining ANN and GLM



•
 

GLMs
 

provide a powerful and flexible family of models for 
claims data

•
 

Complex GLM structures may be required for adequate 
representation of the data

•
 

The identification of these may be difficult
•

 
The identification procedures are likely to be ad hoc

•
 

ANNs
 

provide an alternative form of non-linear regression
•

 
These are likely to involve their own shortcomings if left to stand 
on their own (e.g. reduced transparency)

•
 

They may, however, provide considerable assistance if used in 
parallel with GLMs

 
to identify GLM structure

Conclusions
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