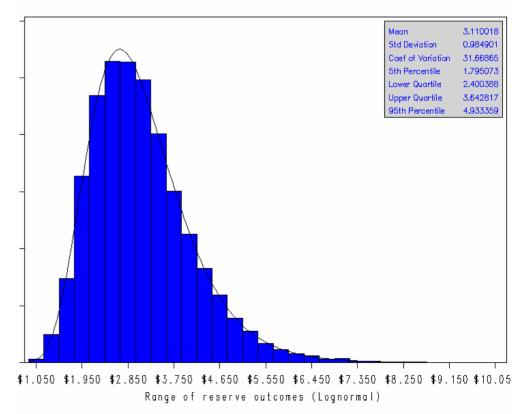


Stochastic Reserving Methods

Advantages, Disadvantages, Key Issues and Lessons Learnt by Andrew Smith & Mitchell Prevett


- 1. Introduction
- 2. Case study
- 3. Summary

Intro - Stochastic reserving?

- A Stochastic Model is any model that includes a random error term
- Stochastic reserving is used "to estimate the full distribution of possible outcomes..." *

not just the mean.

* Source: England and Verrall (2002)

Intro - The Reserving Continuum

Determinis	stic Sensitivity Testing	Scenario/ Stress Testing	Stochastic Overlay	Stochastic
1970s + Still used widely and is the basis of our education	Early 1990s Introduction of PS300 in May 1994	Mid 1990s Scenario testing to enhance understanding of uncertainty	Mid 1990s/ 2000s + Risk Margin discussions/ bootstrapping/ supplementary	2001 + Limited use of stochastic techniques but is on the
	May 1994			

Intro - What are the Techniques?*

Techniques in common use...

- Generalised linear models
- Bootstrapping of deterministic models
- Top down risk quantification
 Others...
- Bayesian or credibility models
- Kalman filter
- Wrights model
- Hoerl curve

* Sources: England and Verrall (2002), Taylor (2000), O'Dowd et al (2005)

Case study – Weekly Comp PPAC GLM

What?

Weekly compensation for a large accident compensation scheme

Why?

- 1. Superimposed inflation? Is it evident? What is the level?
- 2. Better understand the uncertainties in the reserving?
- 3. What insights can we derive to build into the main valuation?
- 4. Estimation of risk margins

How?

 $E(Pmts_{i,j}) = Actives_{i,j-1} \times E(ContRate_j) \times E(PPAC_j)$, where i = devqtr, j = accqtr $GLM1 - ContRate_{i,j} = Actives_{i,j} / Actives_{i,j-1} = f(i, j, i+j) + error$ $GLM2 - PPAC_{i,i} = Pmts_{i,i} / Actives_{i,i} = f(i, j, i+j) + error$

Institute of Actuaries of Australi

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Continuance rates GLM

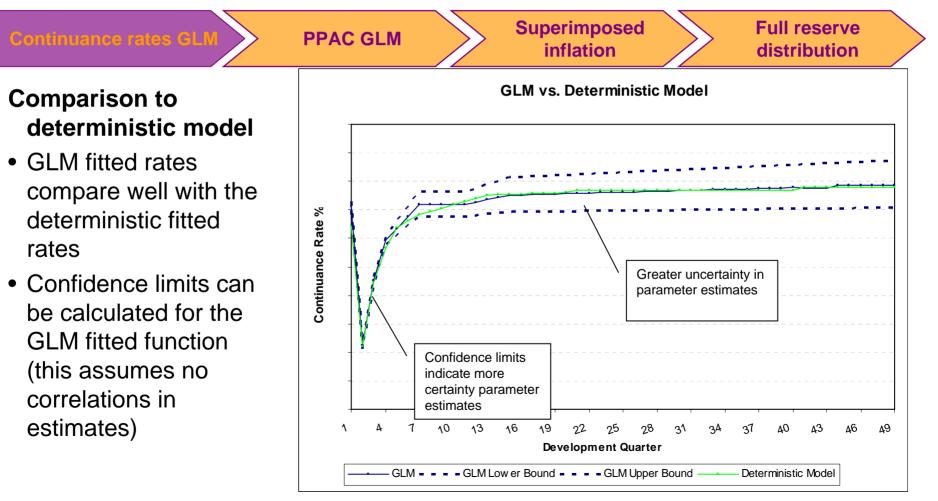
PPAC GLM

Superimposed inflation

Full reserve distribution

Fitted GLM

- Short, medium and long term rates are modelled separately
- Over-dispersed Poisson / Log GLM on Active_{i,j}
- Offset Log(Active_{i,j-1})
- Binary and linear segment transforms are used


Model Parameter Estimates - Short Term						
Model Predictor	Formula	Estimate	Multiple			
Intercept		0.0000				
Development Quarter = 1	(devqtr = 1)	-0.1154	89%			
Development Quarter = 2	(devqtr = 2)	-1.1367	32%			
Development Quarter = 3	(devqtr = 3)	-0.4618	63%			
Development Quarter (linear 4 to 7)	min(max(devqtr-4,0),7-4)	0.0498	105%			
Development Quarter (linear 11 to 15)	min(max(devqtr-11,0),15-11)	0.0089	101%			
Development Quarter (linear from 15)	max(devqtr-15,0)	0.0012	100%			
Development Quarter (greater than 3)	(devqtr ge 4)	-0.2958	74%			
Experience Quarter (step to 30 June XX)	(expqtrdate lt '30junXX'd)	0.0233	102%			
(Development Quarter = 1) and Exp Qtr (prior to 30 June XX)		0.2132	124%			
(Development Quarter = 2) and Exp Qtr (prior to 30 June XX)		-0.0708	93%			

Model Parameter Estimates - Medium Term								
Model Predictor	Formula	Estimate	Multiple					
Intercept		-0.0264						
Development Quarter (after 44)	(devqtr ge 44)	0.0128	101%					

Institute of Actuaries of Australi

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

institute of Actuaries of Austra

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Continuance rates GLM

AC GLM

Superimposed inflation

Full reserve distribution

Fitted GLM

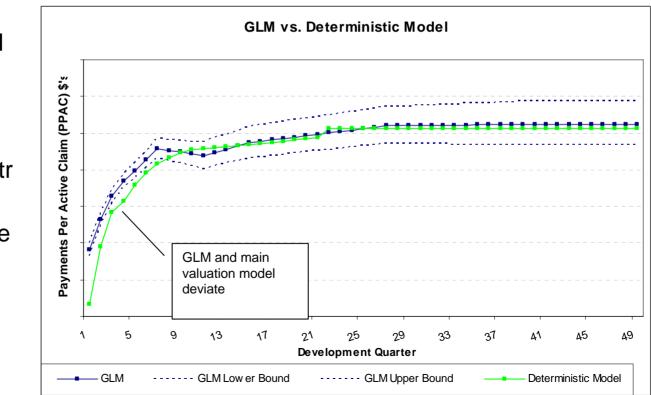
- Over-dispersed Poisson / Log GLM on Pmts_{i,j}
- Offset Log(Active_{i,i})
- Binary and linear segment transforms are used

Model Parameter Estimates						
Model Predictor	Formula	Estimate	Multiple			
Intercept		10.4478				
Development Quarter = 0	(devqtr = 0)	-0.9972	37%			
Development Quarter = 1	(devqtr = 1)	-0.5187	60%			
Development Quarter = 2	(devqtr = 2)	-0.2301	79%			
Development Quarter = 3	(devqtr = 3)	-0.0436	96%			
Development Quarter (linear 3 to 7)	min(max(devqtr-3,0),7-3)	0.0624	106%			
Development Quarter (linear 7 to 11)	min(max(devqtr-7,0),11-7)	-0.0090	99%			
Development Quarter (linear 11 to 15)	min(max(devqtr-11,0),15-11)	0.0166	102%			
Development Quarter (linear 15 to 27)	min(max(devqtr-15,0),27-15)	0.0067	101%			
Development Quarter (linear 27 to 39)	min(max(devqtr-27,0),39-27)	0.0006	100%			
Experience Quarter (linear 30 Jun XX to 31 Dec XX)	min(max(expqtr-93,0),30)	0.0036	100%			

Institute of Actuaries of Australi

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Continuance rates GLM


PPAC GLM

Superimposed inflation

Full reserve distribution

Comparison to deterministic model

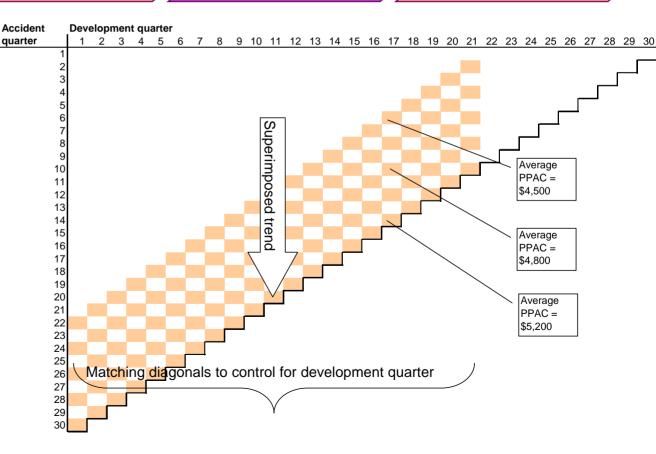
- Some differences in the GLM for early development qtrs
- Compare well after qtr 12
- Should we investigate why there is a difference?

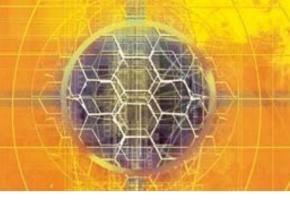
Institute of Actuaries of Australi

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Continuance rates GLM

PPAC GLM


Full reserve distribution


What is SI?

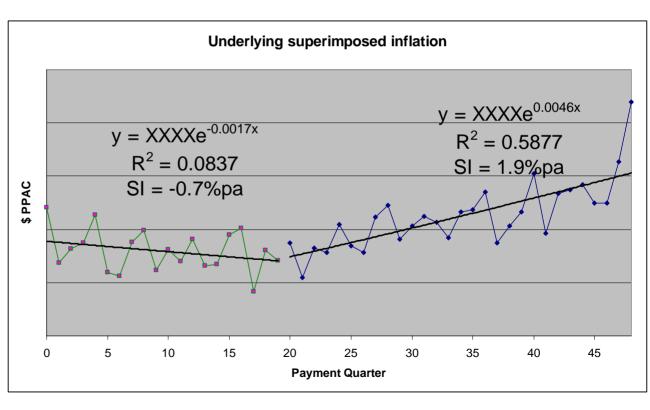
 SI - increase in claims costs across time (payment quarter), after controlling for all known cost drivers (Devqtr and Accqtr)

Deterministic estimation

- Choose matching diagonals (or single Devqtrs)
- Estimate the increases in PPACs for the matched diagonals

Institute of Actuaries of Australi

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY


Continuance rates GLM

PPAC GLM

Sup i Full reserve distribution

Deterministic -Superimposed inflation in PPACs

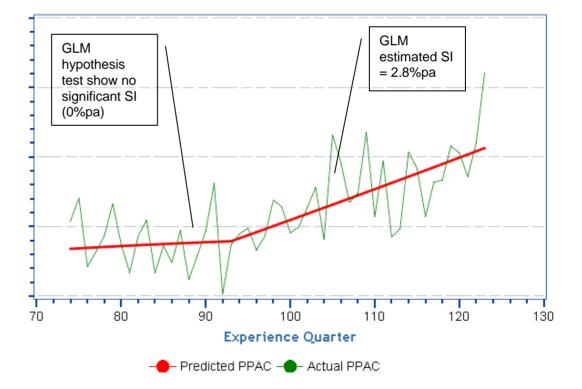
- Appears to be a flat period followed by an upward trend
- Log regression is used to estimate the underlying rates
- What R² is significant?

Institute of Actuaries of Australia

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Continuance rates GLM

PPAC GLM


> ⁵

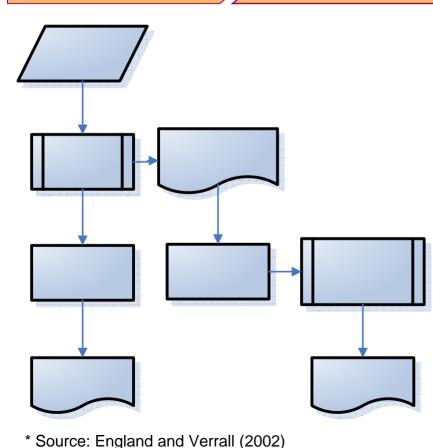
Full reserve distribution

GLM Superimposed inflation in PPACs

- A linear segment is added from the beginning of the trend
- Slope of the estimate indicates an underlying SI of 2.8%pa
- Why might this be different? – Uses full triangle and correct error distribution
- But... what's the cause of the SI?

Underlying Superimposed Inflation from PPAC GLM

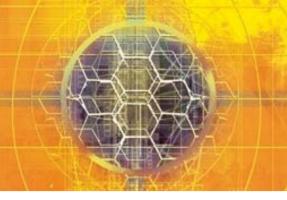
Institute of Actuaries of Australi


Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Continuance rates GLM

PPAC GLM

Superimposed inflation


distributi

Process - Simulate from the GLM Parameters*

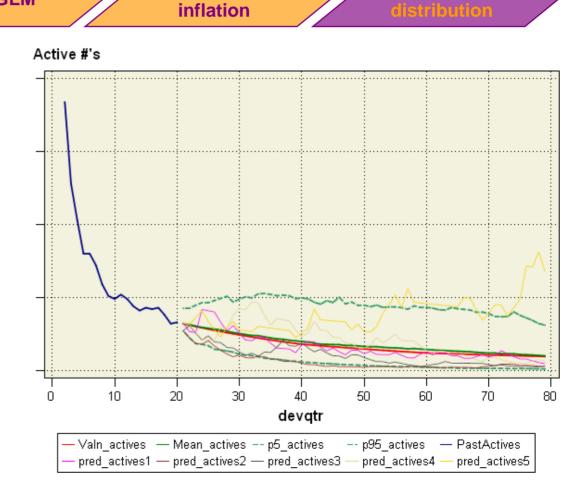
- Step 1 Generate a series of random sets of parameters for each model (continuance rates and PPAC). The distribution of the GLM parameters is assumed to be Multivariate Normal
- Step 2 Calculate the model predictions using each of the sets of parameters
- Step 3 Generate a random observation from the process distribution (i.e. Poisson, Gamma)

Repeat for all future projection quarters, for each accident quarter.

Institute of Actuaries of Australi

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Full reserve


Superimposed

Continuance rates GLM

PPAC GLM

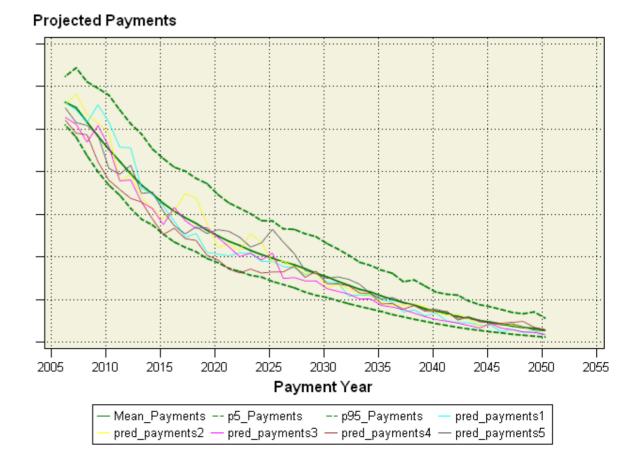
Simulation of Active Claim Numbers

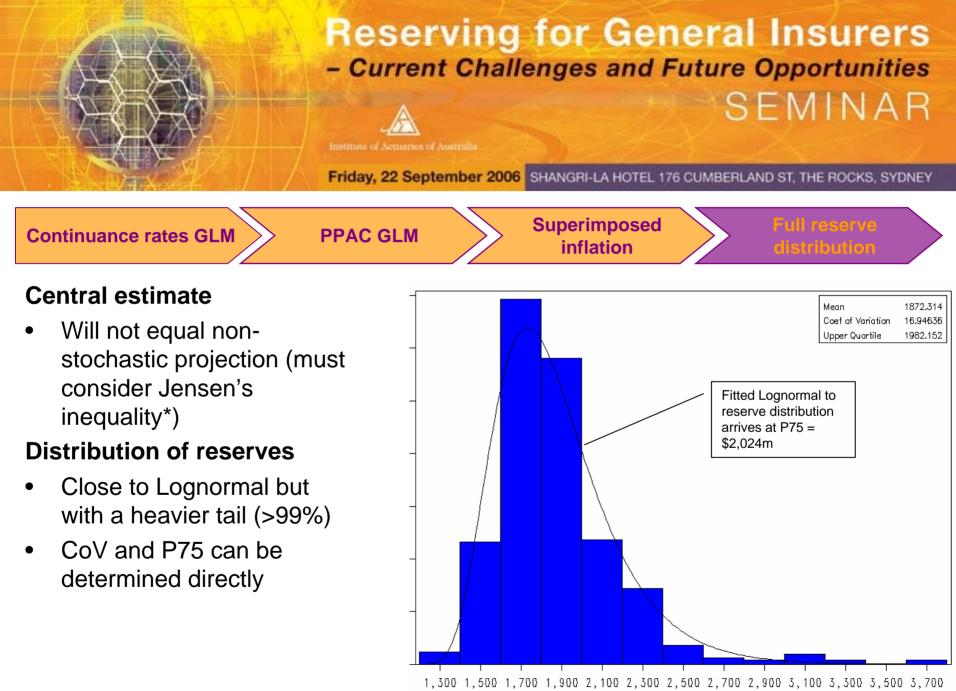
- A selected accident quarter's projections are shown
- 5 simulations are displayed as well as the mean and 5th and 95th percentiles
- GLM simulated mean compares well with the valuation for this accident period

Institute of Actuaries of Australi

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Continuance rates GLM


PPAC GLM


Superimposed inflation

Full reserve distribution

Simulation of Active Claim Numbers and PPACs

- Simulated cash flows are projected for the liability as at the valuation date
- The mean and 5th and 95th percentiles are calculated to show the implied the uncertainty


* Source: Taylor and Mulquiney (2005)

Liability in \$M's

Advantages of Stochastic Reserving

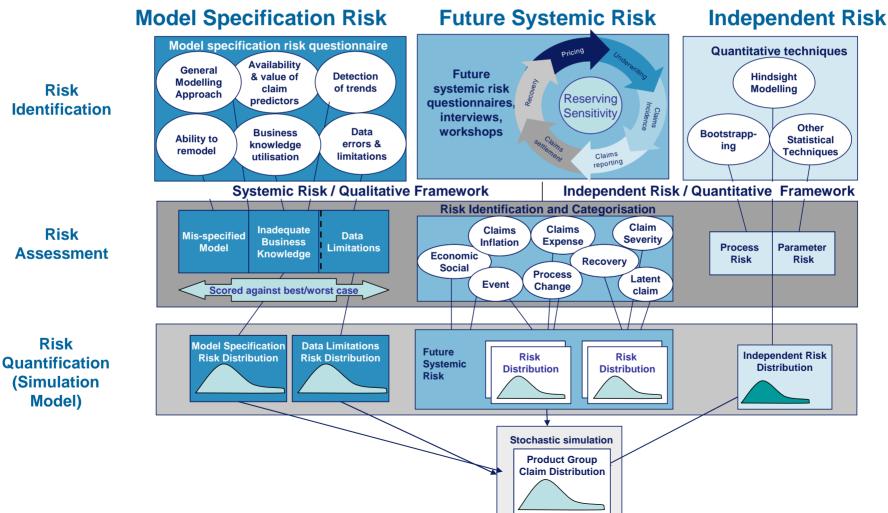
- 1. Superimposed inflation and trends statistical significance can be used to determine if trends are "real".
- 2. Hypothesis testing impact of legislative changes, benefit changes, or any other claims administration changes
- **3. Downside risk** through estimation of full distribution the downside risk and hence risk margins can be estimated
- **4.** Individual claims modelling stochastic models are suitable for individual claims modelling
- 5. Model update (control cycle) testing recent experience against the model we can determine if it needs to be updated

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Disadvantages of Stochastic Reserving

- 1. Less transparent can be harder to explain to management
- 2. Reliable data generally more reliable data is required to construct a more sophisticated model
- 3. Incorporating judgement more complex to overlay judgment based adjustments
- 4. Costly and time consuming can be difficult to articulate the value
- 5. Seen as the fix all If traditional methods fail then SR is unlikely to succeed...it's not an automatic fix
- 6. Model variability NOT risk the past may not be a guide to the future

Risk Framework


Empirical estimation of the claims distribution....

- Workshop the key risk drivers
- Use qualitative and quantitative methods to assess the range of scenarios / outcomes due to a given risk driver.
- Risk assessment phase likely to include stochastic analysis
- Determine a distribution for each risk driver
- Use stochastic simulation to combine the major sources of uncertainty

Institute of Actuaries of Australia

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Summary

- Stochastic techniques are continuing to gain favour part of tool suite
- They are not the magic answer but an important supplement / extension to current reserving practices
- Quantitative assessments should be combined with qualitative assessments to capture all aspects of risk

References

- Taylor G and Mulquiney P (2005). Modelling mortgage insurance as a multistate process. UNSW Actuarial Studies Research Symposium
- England P and Verrall R (2002). Stochastic Claims Reserving in General Insurance. Presented to the Institute of Actuaries 28 Jan 02
- Taylor G (2000). Loss Reserving: An Actuarial Perspective. Kluwer Academic Publishers
- O'Dowd C, Smith A and Hardy P (2005). A Framework for Estimating Uncertainty in Insurance Claims Cost. Presented to XVth General Insurance Seminar.

Stochastic Reserving Methods

Advantages, Disadvantages, Key Issues and Lessons Learnt by Andrew Smith & Mitchell Prevett