

Weather and Carbon Derivatives

Pricing Risk in the ART Market

Jon Tindall

Overview

- Background
 - Alternative Risk Transfer
 - Weather Derivatives
 - Emission Markets
- Pricing and Modelling
 - 4. Pricing Principles
 - 5. Modelling the Weather
- Risk Management
 - 6. Managing the Weather
 - 7. Carbon Risk Management
 - 8. The Way Forward

ART Markets

What is ART?

- What is Alternative Risk Transfer?
 - Covers non-traditional risks
 - Self-insurance
 - Captives
- Areas of ART (Swiss Re definition)
 - Alternative Carriers circumvent regulatory environments as well as taxation treatment
 - Alternative Products Enabling the transfer of non-standard risks.

ART Markets

Types of contracts:

- > CAT bonds
 - Securitised Risks
 - Weather Derivatives
 - ➤ Insurance Linked Securities (ILS)
 - > Emission (Carbon) Derivatives

First securitisation took place in the US - 1988 - sale of rights to emerging profits from blocks of life policies (Cowley and Cummins 2005).

Why ART?

Some of the benefits of Alternative Risk Transfer Products:

- Increased underwriting capacity and capital for insurers;
- Broaden the cover offering;
- Portfolio diversification;
- Protection of existing cash-flows
- Generally receive a different accounting treatment.
- Allows access to a broader capital pool

Convergence of Markets

Weather Markets

ILS

- Insurance Linked Securities
 - Market born out of capacity constraints
 - Circumvent accounting treatments
- Caribbean Catastrophe Risk Insurance Facility (CCRIF)
 - Market born out of capacity constraints.
 - Circumvent accounting treatments

CAT Bonds

- Catastrophe bonds born after capacity constraints early 1990's
 - Hurricane Andrew 1992
 - Northbridge earthquake 1994
- Market hit by GFC fallout
 - New issues dried up
 - Still about 10bn.
 - > Lehman security issue

Lehman Brothers

- Market hit by Lehman Brothers fallout
 - Sponsored 4 CAT bonds
 - > 2 failed, others
- Lehman acted as a TRS counterparty considered to be risk free
- Improved capital backing and collateralisations
 - US Treasury debt
 - Multi-party collateralisations

Weather Derivatives

- ➤ Market peaked in 2006 Hedge fund interest
- Suffered from the GFC fallout

Carbon Markets

Kyoto Protocol

- UN Developed Protocol
 - 1997
 - 136 signatories, only one major contributor outstanding
- 'Flexibility' Mechanisms
- International Emission Trading (IET) —emissions traded between Annex I countries.
- **Joint Implementation** (JI) —allows Annex 1 countries to offset their emissions by investing in emission reduction projects in other Annex 1 countries.

 Bio-sequestration and geo-sequestration projects.
- Clean Development Mechanism (CDM) emission reduction projects in non-Annex 1 countries produce Certified Emission Reductions (CER's)

Recent Scandals

Carbon markets in Europe have experienced several recent setbacks

Phishing scam – February 2010:

- ➤ An estimated 250,000 permits were 'stolen' from 6 German organisations.
- ➤ Inadvertently handed over company details that enabled third parties to steal their emission permits.

Recycled CER scandal – March 2010:

- ➤ The Hungarian government unintentionally sold 2 million recycled CER's onto the market.
- Certificates had already been used to meet compliance targets by Hungarian companies.
- Trading suspended on most European exchanges.

Modelling and Pricing

Pricing

Traditional Black-Scholes assumptions:

- A traded underlying asset that can be used to create a hedge, i.e. sold short.
- Log-normal distribution.

Other methods must be found for the pricing of these contracts:

- Alternative BS framework.
- Martingale approach.
- Numerical simulation.

Pricing Fundamentals

GHD's -Generalised Hyperbolic Distributions

$$f_{x} = \frac{\chi^{-\lambda} \left(\sqrt{\chi \delta}\right)^{\lambda}}{2K_{\lambda} \left(\sqrt{\chi \delta}\right)} x^{\lambda - 1} e^{\left[-\frac{1}{2}(\chi x^{-1} + \delta x)\right]}$$

Black '76 Model

$$dX_{t} = \mu.dt + \sigma.dW_{t}$$

$$X_{t} = X_{0}.e^{\left[\left(\mu - \frac{1}{2}\sigma^{2}\right)(t - t_{0}) + \sigma W_{t - t_{0}}\right]}$$

Pricing Risk

- Analytic Solutions
 - General don't exist
 - > Restricted applicability assumptions
 - > Modifications to Black-Scholes framework

- Numerical Solutions
 - > Parametric / Non-parametric
 - > Easy to perform given computing power

Numerical Methods

'Burn' Analysis:

- No assumptions needed re: the process dynamics;
- No parameters to be estimated;
- Agreement on price.

Monte Carlo Simulations:

$$\mathbf{E}[f(X_t)] = \frac{1}{N} \cdot \sum_{i=1}^{N} f(\overline{X}(t, \psi_i))$$

- Model dependant;
- Data intensive.

Alternative Black-Scholes

> Futures Price:

$$Y_t = X_t . e^{r(T-t)}$$

Process s.d.e:

$$dY_t = y[(\mu - r)dt + \sigma dW_t]$$

Modified Black-Scholes p.d.e:

$$\frac{dV_t}{dt} = rV - \frac{1}{2}\sigma^2 y^2 \frac{d^2V}{dv^2}$$

> Solution:

$$V(y,t) = BS(ye^{-r\tau}, t, r, \sigma)$$
$$= e^{-r\tau}.BS(y, t, 0, \sigma)$$

Modelling Temperature

Temperature Modelling Process:

- De-trend data;
- Choose functional form for seasonal fluctuations;
- Estimate the parameters, including mean-reversion;
- Simulate the process;
- Analyse residuals.

Seasonal Trends

Fourier series to model seasonal component:

$$T_{Seasonal} = \varepsilon \alpha_0 + \sum_i \alpha_i . Sin(\gamma t + \phi) + \sum_i \beta_i Cos(\lambda t + \theta)$$

A first order series is sufficient to capture seasonal pattern.

Combining this with the linear trend we obtain:

$$\overline{T} = a + b.t + \alpha.Sin(\gamma t + \phi) + \beta Cos(\lambda t + \theta)$$

Mean Reversion

- Weather variables do not rise or fall without bound
- Reverts to the seasonal, trended average.

Mean-reversion component:

$$\frac{dX_t}{dt} = -\omega \cdot (X_t - \overline{X})$$

where ω represents the strength of the mean reversion.

➤ Mean reversion strength depends on several factors — most significantly latitude.

Modified OU-process

Ornstein-Uhlenbeck (OU) process:

$$dX_{t} = \omega(\overline{X} - X_{t}).dt + \sigma.dW_{t}$$

Modified OU process:

$$dT_{t} = \left[\omega(\overline{T} - T_{t}) + \frac{d\overline{T_{t}}}{dt}\right]dt + \sigma.dW_{t}$$

$$e^{\omega .s}$$

Which has a solution via an integrating factor,

$$X_{t} = \overline{X}_{t} + (X_{0} - \overline{X}_{o}) e^{-\omega \Delta t} + \int_{s}^{t} e^{-\omega \Delta t} .\sigma_{\tau} dW_{\tau}$$

Temperature Distribution – Syd. & Melb.

Sydney

Melbourne

Temperature Distribution – Syd. & Melb.

Sydney

Melbourne

Changes over time – Syd. & Melb.

Melbourne

Changes over time – Syd. & Melb.

Heteroscedasticity

- Clear seasonal volatility pattern
- > Fit via polynomial

Pricing Example

CDD option - January

Period:	January	
Measure:	Cumulative CDD	
Exercise Prices:	170 / 180 / 190 / 200 CDD's	
Tick::	\$100,000 /CDD	
Location:	Location: Sydney Airport (Kingsford Smith)	

- Pricing via:
 - 1. Normal approximation.
 - 2. 'Burn' analysis 66 years of data.
 - 3. Monte Carlo simulations

Pricing Example

Sydney Airport January

	Exercise (CDD)				
Method	170	180	190	200	
'Burn' Analysis	\$473,306	\$268,763	\$137,865	\$59,582	
Monte Carlo Simulation	\$489,044	\$230,479	\$90,848	\$13,990	
Normal Approximation	\$463,670	\$288,627	\$167,993	\$91,012	

Pricing Example

- Diverge when option further 'out-of-the' money
- Burn Analysis is nearly the average of the other two.

Carbon Prices

Carbon Prices

- Prices collapsed during the GFC.
- ➤ Market has stabilised recent signs of a recovery

Inefficient Market

- ➤ Phase 1 Certificates May 2006 traders discovered the market was 'long'
- ➤ Informational inefficiencies, political risk difficult to apply time series analysis

Where to from here?

- New Markets:
 - Securitisation of Insurance cashflows
 - Australian weather market practically non-existent primary industry based economy.
 - Must promote to seek out suitable counter-parties.
 - Improve product design reduce basis risk.
- New Interest:
 - Hedge funds attracted to immature market.
 - Diversification tool minimal correlation to debt and equity markets.
 - Weather-based indexed insurance contracts.

Questions?

Thankyou

Jon Tindall

jon.tindall@finity.com.au