XIth Accident Compensation Seminar 2007

Individual claim modelling of CTP data

Gráinne McGuire Taylor Fry Consulting Actuaries

XIth Accident Compensation Seminar 2007

Contents

- Introduction
- Data
- Motivation why model by injury severity
- Modelling
 - Injury severity
 - Legislative effects
 - Projection of claim sizes
- Discussion

Introduction

- A previous case study showed that traditional chain ladder models underperformed stochastic models of average claim size for an Australian CTP data set
- Generalised linear model used for size of individual finalised claims. Size depended on accident and calendar periods and operational time
- Data up to September 2003
- With three years additional experience does the model need revision?

XIth Accident Compensation Seminar 2007

Data

- Unit record claim data with
 - Date of accident, notification, finalisation
 - Injury codes and claim severity
 - Other claim characteristics
- Histories of

Institute of Actuaries of Australia

- Claim status
- Claim payments
- Case estimates

Motivation – why model by injury severity

- Claims can have one of six injury severity levels:
 - 1 (least severe) to 5 (catastrophically injured) and 6 (fatality)
 - Claim sizes in each very different
- Claim frequency has been changing over time
 - Does not affect all severities equally
 - Higher claim frequency → more lower severity claims and vice versa

Motivation

• Change in claim size with changing frequency

Accident			Overall					
year ending 1		2	3	4	5	6	Other	Average size
30 June								
1997	72%	15%	7%	1.2%	0.6%	1.5%	2.6%	57,110
1998	73%	13%	6%	1.5%	0.4%	1.1%	4.0%	53,594
1999	75%	12%	6%	1.2%	0.4%	0.9%	4.3%	52,140
2000	74%	12%	6%	1.2%	0.4%	1.1%	5.1%	51,501
2001	75%	13%	6%	1.3%	0.5%	0.9%	2.6%	53,494
2002	75%	13%	6%	1.5%	0.4%	1.2%	2.0%	54,049
2003	77%	12%	7%	1.3%	0.4%	1.3%	1.7%	53,261
2004	75%	12%	8%	1.2%	0.6%	1.4%	1.2%	57,093
2005	71%	13%	10%	1.9%	0.6%	1.4%	1.3%	61,939
2006	71%	14%	10%	2.0%	0.6%	1.4%	1.3%	62,698
Average size								
of all finalised claims	32,187	69,167	161,647	339,372	906,672	110,734	19,966	

Modelling – injury severity

- The 2003 model was an EDF(2.3) model with terms involving operational time, finalisation quarter and accident quarter.
- The model is updated to
 - Incorporate injury severity
 - Include legislative effects
- Brief details given here see paper for more information

Modelling – injury severity

- First step is to select suitable error distribution
 - Gamma is used here
- Legislation (2002) had major effect on claim sizes
 - Initially only model data up to start of legislation
 - Then compare actual values post legislation with predicted values (in absence of legislation)

Modelling injury severity

10.4

10.3

10.2

10.1

10.0

9.9

9.8 9.7

96

95

93

- Fit an initial model with main (categorical) effects for
 - Severity
 - operational time
 - finalisation quarter
- Fit continuous shapes to operational time and finalisation quarter

Modelling injury severity

- Now consider shape of operational time curve for each severity
 - Fit continuous time optime
 + severity +
 severity.categorical optime
 - Include suitable
 interactions between
 severity and cts optime
 terms to get a good fit

Modelling – injury severity

- Similar process may be used to examine:
 - different finalisation quarter effects for different operational times
 - Eg might expect higher levels of superimposed inflation for smaller claims
 - Interactions between severity and finalisation quarter effects

Modelling – legislation effect

- Consider only severity 1 here (see paper for other severities)
- Take pre-legislation model and look at actual/predicted [no legislation] values

			L			L		\mathcal{O}							
Mar-03		85%	56%	93%	52%	43%	38%	48%	44%	51%	73%	83%	81%	82%	
Jun-03			73%	41%	46%	35%	34%	49%	50%	76%	80%	78%	59%		
Sep-03		51%	76%	45%	59%	41%	54%	50%	69%	64%	92%	83%			
Dec-03		36%	75%	41%	45%	42%	59%	60%	92%	89%	90%				
Mar-04		109%	43%	39%	36%	40%	59%	92%	85%	123%					
Jun-04	26%		47%	35%	30%	50%	49%	78%	87%						
Sep-04		7%	46%	41%	34%	51%	66%	84%							
Dec-04		32%	117%	42%	46%	67%	77%								
Mar-05		51%	42%	46%	47%	61%									
Jun-05		19%	64%	48%	74%										
Sep-05		54%	44%	48%											
Dec-05		38%	94%												
Mar-06		43%													
Jun-06	,														

Modelling – legislative effect

- We see
 - A reduction in claim size
 - Wears off with increasing development quarter
 - Wears off with increasing accident quarter – a frequency effect?

Severity 1 frequency

Modelling – legislative effect

• Model fits relativities of post-legislation experience to pre-legislation model

Ratios relative to pre-legislation sizes limited to frequency differential

Modelling - projection

- Post-legislation experience only 3.5 years
- How best to project claim size given immature experience?
- Suppose that the frequency reduction since 2002 has
 - been **entirely** due to legislation
 - knocked out the smaller claims only
 Pessimistic given long term trends revisited later

Modelling - projection

- Simple example of the "frequency" effect
 - Smallest 30% (predicted) claims removed
- Real situation more complicated
 - Claims that are left may be reduced in size by legislation

-original ---- after freq effect

Modelling - projection

- Two submodels
 - Lower operational times (extrapolated from GLM)
 - Higher operational times (based on prelegislation claim sizes, with operational time warped due to frequency effect)
- Merge these models

Projections for December 2004 accident quarter

Modelling - projection

- Given long term frequency trends, severity 1 projection is likely to be pessimistic
- Apply judgemental reduction based on differential between long term downward trend and additional reductions since 2002

Discussion

Out of scope of paper

- Subsidiary models
 - Estimation of ultimate numbers in each severity
 - Estimation of transitions between severities
- Future superimposed inflation
- Use of other predictors
 - Employment status
 - Age etc

Discussion

- Aim is to reduce heterogeneity through use of severity
 - With >70% of claims potential for considerable heterogeneity to remain in Severity 1
 - Could split into less severe/more severe
 - Legal information
 - Injury codes, specific injury types (e.g. whiplash)
 - Level of general damages case estimates after 1 year

Discussion – where next

- Current model requires
 - 2 sub-models for predicting post legislation accident quarters
 - A judgemental assessment to offset pessimism introduced through assigning all frequency reductions to legislation
- Better to have one model for all
- Subject of current work