

Reserving methods: future trends

Greg Taylor

Taylor Fry Consulting Actuaries University of Melbourne University of New South Wales

Overview

- Discussion focuses on stochastic reserving models
- Some comments on current stochastic reserving practices
- Discussion of some of the more advanced models currently available
- Examination of some extensions of these that are within reach in the near future

Institute of Actuaries of Australia

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Stochastic models

Opening observations

General framework

- Data vector Y
- Model $Y=f(\beta)+\epsilon$

- Estimate $\hat{\beta}$ of β
- Future observation vector $Z=g(\beta)+\eta$
- Forecast $Z^*=g(\hat{\beta})$ of Z

vector

• Prediction error Z-Z*=[g(β) - g($\hat{\beta}$] + η

Estimating prediction error

- Prediction error Z-Z*= $[g(\beta) g(\hat{\beta}] + \eta$ Parameter Process error error
- Both errors estimated in terms of residuals of data with respect to model

$$R=Y-\hat{Y}=Y-f(\hat{\beta})$$

 Ultimately distributional properties of Z* depend on R(f) and g

Institute of Actuaries of Australia

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Institute of Actuaries of Australia

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Institute of Actuaries of Australia

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Institute of Actuaries of Australia

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Institute of Actuaries of Australia

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

For example

Institute of Actuaries of Australia

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Institute of Actuaries of Australia

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Conclusion 1

• Any incoherent estimation of stochastic properties of a loss reserve is meaningless

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Available options for forecast error estimation

- Only two
 - Internal estimation
 - Based on measured error between data and model (such as just illustrated)
 - Good for capturing features inherent in the model
 - Parameter error
 - Process error

External estimation

- Based on
 - Identification of specific components of forecast error (see O'Dowd, Smith & Hardy, 2005) e.g.
 - » Future changes in superimposed inflation
 - » Generally systemic changes that are not well represented in past data
 - Judgmental assessment of their contributions

Conclusion 2

- Ideally, forecast error should be composed of
 - Internal estimates
 - Parameter error
 - Process error
 - External estimates
 - Model specification error
 - Errors due to other systemic effects

Internal estimation of forecast error

Conclusion 3

- Good models produce low forecast error (CoV)
 - Economic in use of capital
- Poor models produce high forecast error
 Uneconomic in use of capital

Internal estimation of forecast error

Internal estimation of forecast error

This is what the bootstrap does

Bootstrapping

- One internal form of forecast error estimation
- Are there others?
- Very rarely
 - Due to intractable mathematical complexity in mapping residuals to forecast error
- So need to make the bootstrap work

Institute of Actuaries of Australi

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Institute of Actuaries of Australia

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Institute of Actuaries of Australia

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Institute of Actuaries of Australia

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Institute of Actuaries of Australia

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

What happens when residuals not iid? - example

Residuals assume more influential positions – can distort model and forecast

Actually large residuals

Conclusion 4

 Particular care is needed to ensure that model residuals are consistent with iid assumption if ludicrous bootstrap results are to be avoided

Individual claim reserving and Statistical case estimation

Reserving data treatment

Reserving data treatment

Why does quantity of data matter?

Individual claim modelling

- Data vector Y
- Model Y=f(β)+ε
- Let components Y_i of Y relate to individual claims
 - Y_i denotes some outcome for the i-th claim, e.g. finalised size, paid to date, etc.
- Call this model an **individual claim model**
- Call a reserve based on such a model an individual claim reserve

Example

- Y_i = finalised individual claim size
- Y_i ~ Gamma

$E[Y_i]$

- = exp {function of operational time
 - + function of accident period (legislative change)
 - + function of finalisation period (superimposed inflation
 - + joint function (interaction)of operational time & accident period (change in payment pattern attributable to legislative change)}

Discussion in Taylor & McGuire (2004)

Institute of Actuaries of Australia

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Institute of Actuaries of Austral

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

For example

Institute of Actuaries of Australi

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Alternatively

Special case of individual claim reserving – statistical case estimation

Can bootstrap individual claim reserve

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Adaptive reserving

Static and dynamic models

- Return for a while to models based on aggregate (not individual claim) data
- Model form is still $Y=f(\beta)+\epsilon$
- Example
 - i = accident quarter
 - j = development quarter
 - $E[Y_{ij}] = a j^{b} exp(-cj) = exp [\alpha+\beta ln j \gamma j]$ - (Hoerl curve PPCI for each accident period)

Static and dynamic models (cont'd)

- Example
 - $E[Y_{ij}] = a j^{b} exp(-cj) = exp [\alpha+\beta ln j \gamma j]$
 - Parameters are fixed
 - This is a static model
- But parameters α,β,γmay vary (evolve) over time, e.g. with accident period

Then

- $E[Y_{ij}] = \exp \left[\alpha(i) + \beta(i) \ln j \gamma(i) j\right]$
- This is a **dynamic model**, or **adaptive model**

Institute of Actuaries of Australia

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Illustrative example of evolving parameters

Separate curves represent different accident periods

Formal statement of dynamic model

- Suppose parameter evolution takes place over accident periods
- $Y(i)=f(\beta(i)) + \epsilon(i)$

- [observation equation]
- $\beta(i) = u(\beta(i-1)) + \xi(i)$ [system equation]

Some function

Centred stochastic perturbation

- Let $\hat{\beta}(i|s)$ denote an estimate of $\beta(i)$ based on only information up to time s

Adaptive reserving (cont'd)

- Reserving by means of an adaptive model is adaptive reserving
- Parameter estimates evolve over time
- Fitted model evolves over time
- The objective here is "robotic reserving" in which the fitted model changes to match changes in the data
 - This would replace the famous actuarial "judgmental selection" of model

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Special case of dynamic model: DGLM

• $Y(i)=f(\beta(i)) + \epsilon(i)$

[observation equation] • $\beta(i) = u(\beta(i-1)) + \xi(i)$ [system equation]

- Special case:
 - $f(\beta(i)) = h^{-1}(X(i) \beta(i))$ for matrix X(i)
 - $-\epsilon(i)$ has a distribution from the exponential dispersion family
- Each observation equation denotes a GLM
 - Link function h
 - Design matrix X(i)
- Whole system called a Dynamic Generalised Linear Model (DGLM)

Special case of DGLM: Kalman filter

- $Y(i)=f(\beta(i)) + \epsilon(i)$
- $\beta(i) = u(\beta(i-1)) + \xi(i)$ [system equation]

[observation equation] [system equation]

- Special case:
 - $f(\beta(i)) = h^{-1}(X(i) \beta(i))$ for matrix X(i)
 - $-\epsilon(i)$ has a distribution from the exponential dispersion family
- Further specialised
 - h(.) = identity function
 - So f(.) is linear
 - u(.) is linear
 - $\epsilon(i), \xi(i) \sim N(0,.)$
 - This is the model underlying the Kalman filter (see De Jong & Zehnwirth, 1983)

Form of Kalman filter

- Let Ŷ(i|s) be a fitted value, or forecast, of Y(i) on the basis of data to time s
- Take $\hat{Y}(i|s) = X(i) \quad \hat{\beta}(i|s)$
- Kalman filter estimates

$$\hat{\beta}(i|i) = \hat{\beta}(i|i-1) + K(i) [Y(i) - X(i) \hat{\beta}(i|i-1)]$$

$$\uparrow$$
Kalman gain
(credibility) matrix

Implementation of DGLMs

- The restrictions of the Kalman filter may not always be convenient
 - Linear relation between response variate and covariates
 - Normal distribution of claim observations
- Implementation of a more general DGLM is more difficult
- Can be done using an MCMC (Markov Chain Monte Carlo) approach
- Would be useful to have a simple updating formula similar to that of the Kalman filter (a GLM filter)
 - See Taylor, 2005

Bootstrapping DGLMs

- Recursive nature of the GLM filter creates correlations between residuals
- So conventional bootstrapping is wrong
 It assumes independence between residuals
- Necessary to modify the bootstrap to take account of the correlations
 - Say how
 - See Stoffer & Wall (1991)

Institute of Actuaries of Australia

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

Adaptive individual claim reserving

We began with...

moved to GLM modelling...

Institute of Actuaries of Australi

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

changed to adaptive GLM modelling...

Institute of Actuaries of Australia

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

also considered individual claim modelling...

Institute of Actuaries of Australia

Friday, 22 September 2006 SHANGRI-LA HOTEL 176 CUMBERLAND ST, THE ROCKS, SYDNEY

which can be individual claim GLM modelling...

and could be adaptive individual claim GLM modelling...

References

- De Jong P & Zehnwirth B (1983). Claims reserving state space models and the Kalman filter. Journal of the Institute of Actuaries, 110, 157-181.
- O'Dowd C, Smith A & Hardy P (2005). A framework for estimating incertainty in insurance claims cost. XVth General Insurance Seminar, Institute of Actuaries of Australia.
- Stoffer D S& Wall K D (1991). Bootstrapping state-space models: Gaussian maximum likelihood estimation and the Kalman filter. Journal of the American Statistical Association, 86, 1024-1033
- Taylor G (2005). Second order Bayesian revision of a generalised linear model. Available at www.economics.unimelb.edu.au/actwww/wps2005/No125.pdf
- Taylor G & McGuire G (2004). Loss reserving with GLMs: a case study. Casualty Actuarial Society 2004 Discussion Paper Program, 327-392.

Reserving methods: future trends

Greg Taylor

Taylor Fry Consulting Actuaries University of Melbourne University of New South Wales