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Overview
• Discussion focuses on stochastic reserving 

models
• Some comments on current stochastic 

reserving practices
• Discussion of some of the more advanced 

models currently available
• Examination of some extensions of these that 

are within reach in the near future



Stochastic models

Opening observations



General framework
• Data vector Y
• Model Y=f(β)+ε

• Estimate   of β
• Future observation vector Z=g(β)+η
• Forecast Z*=g( ) of Z
• Prediction error Z-Z*=[g(β) - g( )] + η

β̂

Parameter 
vector

Stochastic 
error vector

β̂

β̂



Estimating prediction error
• Prediction error Z-Z*=[g(β) - g( )] + η

• Both errors estimated in terms of residuals of 
data with respect to model

R=Y- =Y- f( )
• Ultimately distributional properties of Z* 

depend on R(f) and g

Ŷ
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Conclusion 1
• Any incoherent estimation of stochastic 

properties of a loss reserve is meaningless



Available options for forecast error 
estimation

• Only two
– Internal estimation

• Based on measured error between data and model (such 
as just illustrated)

• Good for capturing features inherent in the model
– Parameter error
– Process error

– External estimation
• Based on 

– Identification of specific components of forecast error (see 
O’Dowd, Smith & Hardy, 2005) e.g.

» Future changes in superimposed inflation
» Generally systemic changes that are not well represented in 

past data
– Judgmental assessment of their contributions



Conclusion 2
• Ideally, forecast error should be composed of

– Internal estimates
• Parameter error
• Process error

– External estimates
• Model specification error
• Errors due to other systemic effects



Internal estimation of forecast error
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Conclusion 3
• Good models produce low forecast error 

(CoV)
– Economic in use of capital

• Poor models produce high forecast error
– Uneconomic in use of capital
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Internal estimation of forecast error
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Bootstrapping
• One internal form of forecast error estimation
• Are there others?
• Very rarely

– Due to intractable mathematical complexity in 
mapping residuals to forecast error

• So need to make the bootstrap work
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What happens when residuals not 
iid? - example

ResidualPseudo-
residual

Resample

Assumed iid

Actually large 
residuals

Residuals assume more 
influential positions – can 
distort model and forecast



Conclusion 4
• Particular care is needed to ensure that 

model residuals are consistent with iid
assumption if ludicrous bootstrap results are 
to be avoided



Individual claim reserving
and 

Statistical case estimation



Reserving data treatment
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Reserving data treatment
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Why does quantity of data matter?
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Individual claim modelling
• Data vector Y
• Model Y=f(β)+ε
• Let components Yi of Y relate to individual 

claims
– Yi denotes some outcome for the i-th claim, e.g. 

finalised size, paid to date, etc.
• Call this model an individual claim model
• Call a reserve based on such a model an 

individual claim reserve



Example 
Yi = finalised individual claim size
Yi ~ Gamma
E[Yi]

= exp {function of operational time
+ function of accident period (legislative change)
+ function of finalisation period (superimposed inflation
+ joint function (interaction)of operational time & accident period 

(change in payment pattern attributable to legislative change)}

Discussion in Taylor & McGuire (2004)
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For example
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Can bootstrap individual claim 
reserve 
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Adaptive reserving



Static and dynamic models

• Return for a while to models based on 
aggregate (not individual claim) data

• Model form is still Y=f(β)+ε
• Example

– i = accident quarter
– j = development quarter
– E[Yij] = a jb exp(-cj) = exp [α+βln j - γj]

– (Hoerl curve PPCI for each accident period)



Static and dynamic models (cont’d)
• Example

E[Yij] = a jb exp(-cj) = exp [α+βln j - γj]
– Parameters are fixed
– This is a static model

But parameters α,β,γmay vary (evolve) over 
time, e.g. with accident period

Then
– E[Yij] = exp [α(i) +β(i) ln j – γ(i) j]
– This is a dynamic model, or adaptive model



Illustrative example of evolving 
parameters

Separate curves represent different accident periods
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Formal statement of dynamic model
• Suppose parameter evolution takes place over accident 

periods
• Y(i)=f(β(i)) +ε(i) [observation equation]
• β(i) = u(β(i-1)) + ξ(i) [system equation]

• Let   (i|s) denote an estimate of β(i) based on only 
information up to time s

Some function Centred stochastic perturbation

β̂



Adaptive reserving
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Adaptive reserving (cont’d)
• Reserving by means of an adaptive model is 

adaptive reserving
• Parameter estimates evolve over time
• Fitted model evolves over time
• The objective here is “robotic reserving” in 

which the fitted model changes to match 
changes in the data
– This would replace the famous actuarial 

“judgmental selection” of model



Special case of dynamic model: 
DGLM

• Y(i)=f(β(i)) +ε(i) [observation equation]
• β(i) = u(β(i-1)) + ξ(i) [system equation]
• Special case:

– f(β(i)) = h-1(X(i) β(i)) for matrix X(i)
– ε(i) has a distribution from the exponential dispersion family

• Each observation equation denotes a GLM
– Link function h
– Design matrix X(i)

• Whole system called a Dynamic Generalised Linear 
Model (DGLM)



Special case of DGLM: Kalman filter
• Y(i)=f(β(i)) +ε(i) [observation equation]
• β(i) = u(β(i-1)) + ξ(i) [system equation]
• Special case:

– f(β(i)) = h-1(X(i) β(i)) for matrix X(i)
– ε(i) has a distribution from the exponential dispersion family

• Further specialised
– h(.) = identity function

• So f(.) is linear
– u(.) is linear
– ε(i), ξ(i) ~ N(0,.)
– This is the model underlying the Kalman filter (see De Jong & 

Zehnwirth, 1983)



Form of Kalman filter
• Let (i|s) be a fitted value, or forecast, of Y(i) on the 

basis of data to time s
• Take (i|s) = X(i)     (i|s)
• Kalman filter estimates

(i|i) =     (i|i-1) + K(i) [Y(i) – X(i)    (i|i-1)]

β̂

β̂ β̂β̂

Kalman gain 
(credibility) matrix

Ŷ

Ŷ



Implementation of DGLMs
• The restrictions of the Kalman filter may not always 

be convenient
– Linear relation between response variate and covariates
– Normal distribution of claim observations

• Implementation of a more general DGLM is more 
difficult

• Can be done using an MCMC (Markov Chain Monte 
Carlo) approach

• Would be useful to have a simple updating formula 
similar to that of the Kalman filter (a GLM filter)
– See Taylor, 2005



Bootstrapping DGLMs
• Recursive nature of the GLM filter creates 

correlations between residuals
• So conventional bootstrapping is wrong

– It assumes independence between residuals
• Necessary to modify the bootstrap to take 

account of the correlations
– Say how
– See Stoffer & Wall (1991)



Adaptive individual claim 
reserving



We began with…

Data Fitted

Residual

Model  f Forecast g

Forecast  g

Forecast

Forecast 
error



moved to GLM modelling…
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also considered individual claim 
modelling…
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which can be individual claim GLM 
modelling…
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and could be adaptive individual 
claim GLM modelling…
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