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Combining GLM and data-mining techniques 

Abstract 
 
 

The purpose of this paper is to illustrate the potential advantages of combining GLM and 
data-mining techniques for modelling accident compensation claims data. 
 
A GLM framework often provides an effective way of modelling claims when a model 
structure has been determined.  However, the process of arriving at the structure by 
iterative trial models can be laborious and fallible.  Artificial Neural Networks (ANN) 
can provide a useful tool for seeking out influential components of the required structure. 
 
The benefits of combining GLM and ANN are illustrated with a case study using CTP 
data. 

 
 

Keywords: Data-mining, GLM, neural networks, CTP. 
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1. Introduction 
 

Accident compensation data often exhibit features which complicate loss reserving and 
premium rate setting. Features often observed in the data of accident compensation 
schemes include: 
 
• Speeding up or slowing down of claim payments; 
• Abrupt changes in payment patterns due to, for example, changes in claim 

management practices; 
• Abrupt changes in trends, say due to legislative changes; 
• Changes in the profile of claims; 
• Seasonality; and  
• Other changes which emerge as superimposed inflation. 
 
One method of dealing with these features is through the statistical modelling technique 
Generalised Linear Modelling (“GLM”). GLM have proven useful for modelling accident 
compensation data because the structure of GLM can be chosen to represent features such 
as those listed above. 
 
The structure of a GLM is usually chosen in an ad hoc manner, using an iterative series 
of trial models. This process can be laborious and can be fallible and a more rigorous 
approach is desirable. 
 
Another modeling methodology that may prove useful for seeking out influential 
components of the required structure is Artificial Neural Networks (ANN). ANN have 
some advantages over GLM in seeking out data structures because: 
 
• They have a flexible architecture that can fit almost any data structure; and 
• Model fitting is largely automated so there is no need for an ad hoc structure 

identification approach. 
 

ANN are just one of many data-mining techniques which have the advantages listed 
above. These techniques include CART (Brieman et al, 1984), MARS (Friedman, 1991) 
and MART (Friedman, 2001).  

 
In the following paper, I consider how ANN may assist in formulating the structure of a 
GLM. Specifically the paper: 
 
• Examines the general form of a model of claims data; 
• Examines the specific case of a GLM to represent the data; 
• Considers how the GLM structure is chosen; 
• Introduces and discusses ANN; and 
• Considers how these may assist in formulating a GLM 
 

 
I would also like to acknowledge that this paper draws heavily on discussions with my 
colleague Dr Greg Taylor. 
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2. General form of claims data model 
 
 In general, claims data can be modeled with a function of the following form: 
 
 Yi  = f(Xi; β) + εi , where        [1] 
 

• Yi = some observation on claims experience; 
• β = vector of parameters that apply to all observations; 
• Xi = (xi1, x i2, …, x ip) = vector of p attributes (covariates) of the i-th 

observation; and 
• εi = vector of centred stochastic error terms. 
 
For example, Yi, could be equal to Yad, the paid losses in cell (a,d) of a paid loss triangle 
where a = accident period and d = development period. Another example could be that Yi 
is the cost of the i-th completed claim. 
 
A simple example of a claims data model is the paid loss chain ladder model. In this 
model: 
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 where βd are the chain ladder factors. 
 
 
3. Using GLMs to model claims data 
 
3.1 Form of GLM model 
 

Given a vector of inputs Xi = (xi1, x i2, …, x ip), the GLM has a regression function of the 
form 
 
f(Xi; β) = g-1(ηi)         [3] 
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with βi being unknown parameters and the variables Xir being: 
 
 
• direct quantitative inputs such as accident quarter, quarter of finalisation, etc. 
• transformations of quantitative inputs such as xir

2, xir
3, xir

1/2, log (xir), and (xir - c)+. 
The last function in the list is known as a linear spline and the “+” subscript 
means that the function is zero when xir - c is negative. 

• numeric coding of the levels of a categorical input. For example, for a two level 
categorical input such as sex we could create xi1 = I(sex = male) and xi2 = I (sex = 
female). Here I(.) is the indicator function which is 1 when the statement within 
the parentheses is true and 0 when not. Using this coding, the effect of sex is 
modelled by two sex-dependent constants. 
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• Interactions between input variables such as xi3 = xi2. xi1. 
 
The function g(.) is known as the link function and for many insurance applications, the 
log function is used for the link function. η is often referred to as the linear predictor. 
 
As indicated by Equation [3], the GLM regression function has a large amount of 
flexibility. The link function, input transformations, and interaction terms allow one to 
construct regression functions for quantities which are complicated and non-linear 
functions of their inputs. This flexibility is one reason for the widespread use of GLMs in 
actuarial applications. 
 
However, determining the appropriate input transformations and interactions to include 
in a GLM model can be difficult to do in practice. This is an area where the skill of the 
model builder can play a large part in determining how well the regression function will 
model the data.  
 
As an illustration of the types of model that could be constructed with a GLM consider 
the following simple GLM model: 
 
• Yi = cost of i-th completed claim; 
• Yi ~ Gamma. In other words the centred stochastic error terms in Eqn [1] have a 

gamma distribution; 
• E[Yi] = exp [αi + βi ti] with  

o αi = accident period to which i-th claim belongs 
o ti = operational time at completion of i-th claim = proportion of claims 

from the accident period ai completed before i-th claim. 
 

More generally we could model Yi as: 
 
E[Yi] = exp [function of operational time].                                                 [4] 
 
Further, legislative changes may mean that our model could be improved with a model of 
the form; 
 
E[Yi] = exp [function of operational time  
+ function of accident period (legislative change) ]    [5] 

 
 Taking this approach further, one may be able to construct a model with the form: 
 

E[Yi] = exp [function of operational time  
+ function of accident period (legislative change) 
+ function of completion period (superimposed inflation) 
+ joint function (interaction) of operational time & accident period (change in payment 
pattern attributable to legislative change)]     [6] 
 
Models of this type may be very detailed and may include a number of features such as: 
• Operational time effects (payment pattern effects) 
• Seasonality  
• Creeping changes in payment pattern 
• Abrupt changes in payment pattern 
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• Accident period effects (legislative change) 
• Completion quarter effects (superimposed inflation) 
• Variations in superimposed inflation over time 
• Variations of superimposed inflation with operational time. 

 
 
3.2 Choosing GLM structure 
 

A case study of a Motor Bodily Injury (CTP) insurance data set in one state of Australia 
is presented as an example of choosing an appropriate GLM structure to model a 
data set. The payments for Motor Bodily Injury are usually dominated by a single lump 
sum near the date of claim completion (finalisation). Hence a common approach to such 
payment types is to: 
 
• Model the expected number of claim finalisations to be made at future dates; 

and 
• Model the expected size of completed claims at each future finalisation date. 

 
In the following paper attention is restricted to the model of expected claim sizes, however 
the general conclusions apply equally to the model of claim finalisations. 
 
The data set consists of a claim file with approximately 60,000 claims. For each claim 
various items were recorded, including the date of injury, date of notification, and histories 
of paid losses, case estimates and finalised/unfinalised status including dates of change of 
status. 
 
The GLM structure was chosen in a largely ad hoc manner by using: 
 

• Trial and error regressions; and  
• By looking at a number of statistical diagnostics such as residual plots, AIC 

values, etc. 
 

For example, in the first instance a model with just an operational time effect was fitted 
to the data (Figure 1). 
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Figure 1 Individual claim regression estimate of trend in average claim size by 
operational time. 
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Residuals were then examined as a function of the other predictors that were not included 
in the model. Examination of these residuals revealed that there appeared to be 
unmodelled trends by: 
 

• Accident quarter (Figure 2); and 
• Completion (finalisation) quarter (Figure 2). 

 
For example, there is a clear trend in the extreme right of the accident quarter residual plot 
(seen in the blue line). 
 
Figure 2 Deviance residuals as a function of accident quarter and finalisation quarter 

 

   
 

Terms which were functions of accident quarter and finalisation quarter were then 
introduced into the model and the process of trial and error model refinement continued. 
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By the end of the structure selection process the model had a complex structure and 
included terms for: 
 
• Operational time - the average size of finalised claims increases with 

operational time; 
• Seasonality; 
• Claim frequency – a decrease induces increased claim sizes; 
• Accident quarter. This feature resulted from legislative changes that came into 

effect in September 2000. This legislation placed limitations on the payment of 
plaintiff costs and effectively eliminated a certain proportion of smaller claims 
in the system in all subsequent accident quarters;  

• Change in operational time effect with change in Scheme rules; and 
• Superimposed inflation (payment quarter trends) varying with operational time. 

This brings out the feature that smaller and larger finalised claims are subject to 
different rates of superimposed inflation. 

 
More details of the model fitting process are found in Taylor and McGuire (2004). Two-
dimensional plots of the linear predictor of the GLM model are shown in Figure 3. 
 
Figure 3 Plot of the linear predictor of the GLM model. To smooth these plots I have 
assumed that the rates of finalisation in each accident quarter are equivalent and I have 
ignored the effect of seasonality. 

 

 
In general, a more rigorous approach to structure selection seems desirable compared to 
the one presented above. Artificial Neural Networks may be an alternative approach to 
seeking out influential components of the required structure. They are introduced in the 
following Section. 
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4. Artificial Neural Networks (ANN) 
 
4.1 Form of ANN Model 
 

In the previous section, we saw that the basic approach of modelling with GLM was to 
match the structure of the regression function to the data in an iterative trial manner. The 
approach of modeling with ANN is different. Instead of matching the model to the data, 
the ANN regression function is given an initial structure that is so flexible it can model 
almost anything. Careful fitting is then used to constrain the function so that it will only 
describe the underlying features of the data. 
 
Starting with a vector of p inputs X = (x1, x 2, …, x p), we can construct a neural network 
regression function as follows. First we create M linear combinations of inputs 
 

∑
=

=
p

i
imim xwh

1
         [7] 

 
 
The actual value that we choose for M will be determined in the tuning/fitting process. 
These M linear combinations are then passed through a layer of activation functions 
g(hm) (Figure 4) to produce the outputs Zm
 

)()(
1

∑
=

==
p

i
imimm xwghgZ        [8] 

 
These first steps correspond to the middle (or hidden) layer of the neural network (Figure 
5). 
 
 
Figure 4  A sigmoidal activation function. A sigmoidal curve is usually chosen as it 
introduces non-linearity into the regression function while keeping responses bounded. 
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The regression function is then taken to be a linear combination of the outputs from the 
hidden layer. 

 

∑ ∑∑
=

==
m

p

i
imim

m
mm xwgWZWXf )()(

1
     [9] 

  
 
Figure 5 The structure of ANN. This neural network has a single hidden layer with 5 
hidden units (M = 5). Figure adapted from Gershenfeld (1999). 
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The parameters of this regression model are the weights. In their simplest form these 
regression functions will have (p+1) × M parameters. Typically there are many more 
parameters in a neural network regression function compared to a GLM regression 
function. 
 
As might be expected, this structure produces a regression function that is very flexible. 
Indeed, it has been shown that a neural network regression function with a single hidden 
layer and enough hidden units can describe any continuous function to any desired 
degree of accuracy. Further, if you introduce a second hidden layer, it can be shown that 
the neural network can describe any function with a finite number of discontinuities. 
 
Weights are usually determined by minimising the least-squares error: 

 
 
          [10] ∑ −= fErr ))((1

=

N

i
ii xy
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2

2
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Overfitting is prevented in neural networks by adding a penalty function to the sum of 
squares error function which becomes larger as the regression function becomes less 
smooth. The penalty function is typically defined by 
 
          [11] 
 

)( ∑∑++Err λ 22∑
m p

mp
m

m wW

where the Wm and wmp are the weight parameters from the neural network regression 
function (Equation [9]). It is seen that the weight decay parameter, λ, controls the 
magnitude of the penalty. So by choosing a larger λ, the fitted weights are forced to be 
smaller and the regression function to be smoother. 
 
λ  is typically determined by cross-validation. For cross-validation, the data is randomly 
divided into a training data set and a test data set. We then fit a number of neural network 
models to the training data using a number of values of λ. The sum of squares in the test 
data set is then determined for each of the models. The λ value that minimises the sum of 
squares in the test set, is the λ value that is chosen. The following references provide 
greater detail on ANN theory: Bishop, 1995; Hastie et al. 2001 and Ripley,1996. 

 
 
4.2 Choosing ANN structure 
 

The fitting of an ANN model is illustrated in this subsection using the same data as was 
used for the previous GLM model. A random subset of 70% of the data was assigned to 
be the training data set, while the remaining 30% formed the test data set. The tuning 
parameters were determined using cross-validation and the final neural network 
consisted of a single hidden layer with 20 units and a weight decay, λ, of 0.05. 
 
The predictive accuracy of the ANN on the test data set compared favourably to the GLM 
for two different measures (Table 1). In addition, it took significantly less time to fit the 
ANN compared to the GLM model. The ANN algorithm was largely automated while 
fitting the GLM required significant input from the model builder. 
 
 
Table 1 Test errors for the ANN and GLM models 

 
Model Average 

Sum of 
squares 

Average 
Absolute 

Error 
GLM $99,9652 $33,777 
ANN $99,8432 $33,559 

 
A variety of 1 dimensional residual plots showed that there appeared to be no systematic 
bias in the model fits across the predictors. The quality of the residual plots was similar 
between the ANN and the GLM model. 
 
Because the ANN has a complex algebraic structure, it is usually necessary to use 
graphical means to understand the features of the model. One example is shown in Figure 
6 where a plot of the log of the claim size for the ANN model is compared to that 
produced by the GLM model. 
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Figure 6: Plot of log(size) for the ANN model (left) and the previous GLM model 
(right). Smoothing as for Figure 3. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
        
 
 
 
 
  
 

One-dimensional graphical plots can also be useful for visualising data features. For 
example Figure 7 shows a plot of historical and future superimposed inflation from the 
ANN. In this figure superimposed inflation is defined to be the gradient of the trend in 
finalised claim size as a function of payment quarter, with all other predictors held 
constant. 
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Figure 7 Historical and projected (from finalisation quarter 38) superimposed 
inflation for the ANN model as a function of finalisation quarter and development 
quarter. Development quarter was: red line, 10; green line, 20; yellow line, 30; blue line, 
40. All other predictors were constant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 illustrates how the ANN has searched out the general form of past superimposed 
inflation. Future superimposed inflation has then been determined by simple 
extrapolation. By simple extrapolation I mean that the fitted ANN function has been used 
to project values of superimposed inflation for finalisation quarters outside the range of 
finalisation quarters that were used for model fitting. The main features to note from this 
figure are: 
 
• ANN have been useful in searching out the general from of past superimposed 

inflation; and 
• Simple extrapolation of the ANN has produced forecasts of negative 

superimposed inflation.  
 
Forecast negative SI may be undesirable and one would need to consider the expected 
claims environment in the future to determine an appropriate SI forecast. In this example, 
simple extrapolation was used for the forecast. However because the ANN is fitted over 
the range of the input values in the data set, the complex nature of the ANN 
function means that there is little control of its behaviour outside the input data 
ranges when simple extrapolation is used. 
 
It is however possible to project future claim size with the ANN without any 
finalisation quarter (superimposed inflation) effects. Doing this removes the 
problem of extrapolation in the finalisation quarter dimension. This can be done 
by keeping the finalisation quarter constant (and equal to the most recent 
historical finalisation quarter) for all records in the data set used to project future 
values of claim size.  
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The projections without superimposed inflation can then be supplemented by a 
separate model of expected future superimposed inflation. 

 
 

5. Using ANN to choose GLM structure 
 

In the previous Sections of this paper an illustration was presented of how both GLM and 
ANN could be used to model important features in insurance claim data. However, there 
are some reasons why it may be preferable to use GLM over ANN.  
 
In particular GLM models tend to be simpler and more transparent than ANN models. 
This is illustrated by the fact that the ANN model presented above contained 181 
parameters compared to the 13 parameters in the GLM. In addition, the linear predictor of 
the GLM has identifiable components introduced to model specific features of the claim 
data. This is of particular advantage when it comes to decisions about how future claim 
experience should be projected.  
 
However one issue with GLM is that the process of arriving at the structure by iterative 
trial models can be laborious and fallible.   
 
This suggests that we may get the best out of ANN and GLM if we use them in 
combination in the following manner:  
 
• Use ANN as an automated tool for seeking out trends in data: 

o Apply ANN to the data set 
o Study trends in the fitted model against a range of predictors or pairs of 

predictors using graphical means (Figures 6 and 7 provide some simple 
examples). 

 
• Use this knowledge to choose the functional forms to include in the GLM model. 
 
I note that it would be possible to perform the same type of analysis using other data-
mining techniques such as CART and MARS. In some cases the more transparent 
functional forms behind the CART and MARS models may aid in identifying important 
features of the data. However in other cases the greater flexibility of the ANN 
architecture may be better at picking out the features of the data.  
 
In all cases ,however, I acknowledge that while the data-mining techniques allows 
one to visualise the gross features of the data, there may still be some difficulty in 
translating this knowledge into an appropriate GLM model. In many cases the 
final model may be no better than could be constructed using the usual ad hoc 
approach to GLM fitting. 
 
However an ultimate test of the GLM would be to apply ANN to the residuals from the 
GLM fit in an attempt to seek out any remaining structure. If the GLM fit is good there 
should be no remaining structure in the residuals. Of course, the parameters of the ANN 
would need to be determined using cross-validation. 
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In the following diagram (Figure 8) an ANN was fitted to residuals from a main effects 
GLM model. A main effects model is one in which no interaction terms have been 
included. 
 
Figure 8 Neural Network fit to the residuals from the main effects GLM model 

 
  
The figure indicates that the chosen GLM structure may: 
 
• Over-estimate the more recent experience at the mid-ages of claim 
• Under-estimate it at the older ages 

 
 
6. Conclusions 

 
GLM provide a powerful and flexible family of models for claims data. However, 
complex GLM structures may be required for adequate representation of the data. The 
identification of these may be difficult and the identification procedures are likely to be 
ad hoc. 

 
ANN provide an alternative form of non-linear regression to GLM. However, the use of 
ANN to model claims data is likely to involve its own shortcomings if the ANN are left 
to stand on their own. These shortcomings relate, in particular, to their reduced 
transparency in comparison to GLM. ANN may, however, provide considerable 
assistance if used in parallel with GLM to identify GLM structure. 
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