
  

 
 
 

 
 

 
Application of Soft-Computing 

Techniques in Accident 
Compensation 

 
Prepared by  

 
Peter Mulquiney 

Taylor Fry Consulting Actuaries 
 
 
 
 
 
 
 

Presented to the Institute of Actuaries of Australia  
Accident Compensation Seminar 28 November to 1 December 2004. 

 
 
 
 
 
 
 
 

This paper has been prepared for the Institute of Actuaries of Australia’s (IAAust) Accident Compensation Seminar, 
2004.  The IAAust Council wishes it to be understood that opinions put forward herein are not necessarily those of 

the IAAust and the Council is not responsible for those opinions. 
 
 
 
 
 

© 2004 Institute of Actuaries of Australia 
 
 
 

The Institute of Actuaries of Australia 



  

Level 7 Challis House 4 Martin Place 
Sydney NSW Australia 2000 

Telephone: +61 2 9233 3466 Facsimile: +61 2 9233 3446 
Email: insact@actuaries.asn.au  Website: www.actuaries.asn.a



 i 

Abstract  
 
In this paper, soft-computing methods are applied to some aspects of loss reserving 
and pricing for a motor bodily injury (CTP) portfolio. In particular, the performance 
of a GLM model of the average size of finalised claims is compared to models 
developed using the soft-computing techniques, neural networks, MARS and MART.  
 
Both the neural network and MART models were found to have better prediction 
accuracy on past experience periods than the GLM model. Predictive accuracy was 
measured by both the sum of squares, and the average absolute error, in a separate 
test data set. However, both the neural network and MART models had features 
which made them less suitable than the GLM model for projecting claim sizes into 
future periods. 



 ii 

Table of Contents 
 
Table of Contents...........................................................................................................ii 
 
1 Introduction............................................................................................................1 
 
2 Overview of soft computing techniques ................................................................2 

2.1 Model architectures........................................................................................2 
2.1.1 GLMs .....................................................................................................2 
2.1.2 Neural networks .....................................................................................3 
2.1.3 MART....................................................................................................6 
2.1.4 MARS ....................................................................................................7 

2.2 The problem of overfitting.............................................................................8 
2.2.1 GLMs .....................................................................................................8 
2.2.2 Neural networks .....................................................................................8 
2.2.3 MART and MARS...............................................................................10 

 
3 Case study ............................................................................................................11 

3.1 Data ..............................................................................................................11 
3.2 Methodology ................................................................................................12 
3.3 Results..........................................................................................................12 

3.3.1 Summary of the GLM model from Taylor and McGuire (2004).........12 
3.3.2 Comparison of models .........................................................................14 
3.3.3 Projections of claim size ......................................................................20 
3.3.4 Use of neural networks in GLM modelling .........................................20 

 
4 Discussion ............................................................................................................23 

4.1 Performance of soft-computing methods for the data..................................23 
4.2 Projection with soft-computing methods .....................................................24 
4.3 GLMs vs soft-computing methods in loss reserving and pricing ................24 

 
5 Acknowledgements..............................................................................................26 
 
6 References............................................................................................................27 
 
7 Appendix – Average sizes of finalised claims.....................................................28 
 
 
 
 



 1 

1 Introduction 
 

Accident compensation data often exhibit features which make loss reserving and 
pricing difficult when using traditional actuarial techniques such as the chain 
ladder method. Typical features observed in the data of accident compensation 
schemes which complicate the analysis include: 
 

• changes in the rate of claim finalization ; 
• legislative changes; 
• seasonality; and  
• superimposed inflation which varies by experience year and age of 

claims. 
 

One method of dealing with these features is through conventional statistical 
modelling techniques such as Generalised Linear Modelling (“GLMs”). Indeed 
this is the topic of Taylor and McGuire’s paper “Loss reserving with GLMs” 
(also presented at this conference). An alternative group of techniques that are 
also potentially useful are those based on the ideas of soft-computing. 
 
Soft-computing techniques include methods such as neural networks, MARS 
(“Multiple Adaptive Regression Splines), and decision tree based methodologies 
like MART (“Multivariate Additive Regression Trees”). A strength of these 
techniques is their ability to model non-linear relationships. What distinguishes 
them from more traditional approaches in this respect is that they can identify 
and model nonlinearities almost automatically. In other words, the modeller does 
not need to define the nonlinearities and interactions explicitly as is necessary 
with conventional techniques such as GLMs. 

 
In this paper, I will discuss the application of soft-computing methods to the 
problems of reserving for a motor bodily injury (CTP) portfolio. In particular I 
will compare the performance of a GLM model with the soft-computing 
techniques, neural networks, MARS, and MART, and will discuss some of the 
potential advantages and disadvantages of these methods. 
 
The application of soft-computing in actuarial science is not new. The review 
papers by Shapiro (2001, 2003) provide an overview of the published actuarial 
applications. The applications are wide ranging and include data mining (e.g., 
Kolyshkina and Brookes, 2002), underwriting and risk classification, as well as 
insolvency modelling.  However to date, little work has been devoted to these 
methods for pricing and reserving in longer tailed classes of business such as 
accident compensation portfolios. Note that the current paper only considers 
some issues in relation to aggregate pricing and loss reserving; for example, risk 
rating is not considered. 
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2 Overview of soft computing techniques 
 

In the following section I give an overview of the theory behind neural networks, 
MART, and MARS and compare these methods to GLMs. This overview is 
intended to be brief with the main motivation to give the reader some insight into: 
 

• the differences in the architectures of the models that are produced by each 
of these methodologies; and  

 
• how each of these methodologies deals with the problem of overfitting. In 

other words, how each of these methodologies attempts to fit just the 
underlying trends in the data, and not the “noise”. 

 
For readers wishing to gain a greater understanding of these methods the textbook 
by Hastie, Tibshirani, and Friedman (2001) is recommended. More detail on each 
of the individual methods can be found in the following sources: Bishop (1995) 
and Ripley (1995) for neural networks; Friedman (2001) for MART; and 
Friedman (1991) for MARS. 

 

2.1 Model architectures 
 

All the models discussed in the present paper are types of regression models. That 
is, they attempt to predict an outcome measurement, Y, from a vector of p 
predictor measurements, X. Here, the outcome measurement is often referred to as 
the dependent or response variable, while the predictor measurements are often 
referred to as independent variables, inputs or covariates. In other words, each of 
these methods gives us a function of the predictor measurements, f(X), for 
predicting Y. 
 
In this section, the general form (or architecture) of the regression functions 
produced by each of these methodologies is presented. 
 

2.1.1 GLMs 
 

Given our vector of inputs X = (X1, X2, …, Xp), the GLM has a regression function 
of the form 
 

f(X) = g-1(η)    [2.1] 
 

where  ∑
=

+=
p

i
ii X

1
0 ββη      

 
with βi being unknown parameters and the variables Xi being: 
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• direct quantitative inputs such as accident quarter, quarter of finalisation, 
etc. 

 
• transformations of quantitative inputs such as Xi

2, Xi
3, Xi

1/2, log (Xi), and 
(Xi - c)+. The last function in the list is known as a linear spline and the 
“+” subscript means that the function is zero when Xi - c is negative. 

 
• numeric coding of the levels of a qualitative input. For example, for a two 

level qualitative input such as sex we could create X1 = I(sex = male) and 
X2 = I (sex = female). Here I(.) is the indicator function which is 1 when 
the statement within the parentheses is true and 0 when not. Using this 
coding, the effect of sex is modelled as by two sex-dependent constants. 

 
• Interactions between input variables such as X3 =X2.X1. 

 
The function g(.) is known as the link function and for many insurance 
applications, the log function is used for the link function. η is often referred to as 
the linear predictor. 
 
As indicated by Eqn [2.1], the GLM regression function has a large amount of 
flexibility. The link function, input transformations, and interaction terms allow 
one to construct regression functions for quantities which are complicated and 
non-linear functions of their inputs. This flexibility is one reason for the 
widespread use of GLMs in actuarial applications. 
 
However, determining the appropriate input transformations and interactions to 
include in a GLM model can be difficult to do in practice. This is an area where 
the skill of the model builder can play a large part in determining how well the 
regression function will model the data.  
 

2.1.2 Neural networks 
 

In the previous section, we saw that the basic approach of GLMs was for the 
model builder to match the architecture of the regression function to the data. The 
approach of neural networks is somewhat different. Instead of matching the model 
to the data, the neural network regression function is given an initial architecture 
that is so flexible it can model almost anything. Careful fitting is then used to 
constrain the function so that it will only describe the underlying features of the 
data. 
 
Starting with our vector of inputs X = (X1, X2, …, Xp) we can construct a neural 
network regression function as follows. First we create M linear combinations of 
inputs 
 

∑
=

=
p

i
imim Xwh

1
    [2.2] 
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The actual value that we choose for M will be determined in the tuning/fitting 
process (see section 2.2). These M linear combinations are then passed through a 
layer of activation functions g(hm) (Fig. 2.1) to produce the outputs Zm 
 

)()(
1
∑

=

==
p

i
imimm xwghgZ     [2.3] 

 
These first steps correspond to the middle (or hidden) layer of the neural network 
(Fig. 2.2). 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

Figure 2.1 A sigmoidal activation function. A sigmoidal curve is usually chosen 
as it introduces non-linearity into the regression function while keeping responses 
bounded. 
 
 
The regression function is then taken to be a linear combination of the outputs 
from the hidden layer. 
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Figure 2.2 The structure of a neural network. This neural network has a single 
hidden layer with 5 hidden units (M = 5). Figure adapted from Gershenfeld 
(1999). 
 
 
The parameters of this regression model are the weights. In their simplest form 
these regression functions will have (p+1) × M parameters. Typically there are 
many more parameters in a neural network regression function compared to a 
GLM regression function. 
 
As might be expected, this architecture produces a regression function that is very 
flexible. Indeed, it has been shown that a neural network regression function with 
a single hidden layer and enough hidden units can describe any continuous 
function to any desired degree of accuracy. Further, if you introduce a second 
hidden layer, it can be shown that the neural network can describe any function 
with a finite number of discontinuities. 
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2.1.3 MART 
 

 “Multiple Additive Regression Trees” (MART) was first developed by Jerome 
Friedman in 2001. This technique is also known as gradient boosting and is the 
basis of the Salford Systems data mining product “Treenet”. 
 
Before we discuss the architecture of the MART regression function, it is 
necessary to have a basic understanding of regression trees. Regression trees are 
regression functions which partition the predictor variable values into disjoint 
regions and model the response of each region by the average response observed 
in the region. For example, if our vector of inputs was X = (X1, X2), then a 
regression tree with 4 regions (or terminal nodes) would partition the predictor 
space into 4 regions (Fig. 2.3). The response from each region would then be 
modelled by a constant as follows 
 

}),{()( 21

4

1
m

m
m RXXIcXf ∈=∑

=

    [2.5] 

 
with  )|( miim RXYaveragec ∈=  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3 A vector of 2 inputs divided into 4 regions. 
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The idea of MART is to form a regression function out of a “committee” of small 
regression trees. Small regression trees, for the purposes of MART, divide the 
input space into between 2 to 8 regions. Hence, each regression tree on its own is 
a very poor regression function. However by forming a committee of these trees 
the predictive power of the resultant regression function is greatly improved. 
 
The committee of regression trees is constructed in an automated stagewise 
manner. In other words, the regression function is automatically grown by adding 
new regression trees one at a time. At each addition, only the parameters of the 
newly added tree are estimated, with the parameters of the existing trees 
remaining the same. Thus as new trees are added, the features of the data set 
become progressively better represented by the regression function. 
 
Hence, the overall regression function for a MART model is the sum of a number 
of individual piecewise constant functions. This means that they are well suited to 
modelling discontinuities. In addition, because of the large number of trees 
usually involved in the regression function, they are still able to well approximate 
smooth curves, albeit in a piecewise manner. 
 

2.1.4 MARS 
 

Multivariate adaptive regressions splines (“MARS”) is an adaptive regression 
method that builds up a regression function automatically in a forward stepwise 
manner using linear splines. Linear splines have the functional forms (Xi - c)+ or 
(c - Xi )+ where the constant c is called the knot. 
 
The MARS algorithms adds linear splines to the regression function one at a time. 
The particular linear spline that is chosen at each stage is determined by 
computational brute force and is simply the spline that gives the biggest decrease 
in the residual sum of squares when added to the regression function. Note that 
the new spline may be added alone or as an interaction term with one or more of 
the linear splines already present in the regression function. In this way the model 
architecture automatically adapts to match the features of the data. 

 
As can be noted from the above description, the overall architecture of a MARS 
regression model is less flexible than a GLM since: 
 

• linear splines are the only input transformation that is allowed; and 
• the regression function does not explicitly include a link function. 

 
However, MARS has the advantage over GLMs that it automatically and 
adaptively determines the architecture of the regression function. 
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2.2 The problem of overfitting 
 
A goal of the previous section was to give some insight into the different 
regression function architectures that are possible with the different modelling 
methods. For all the methods discussed, it was seen that each method could yield 
a regression function with a large amount of flexibility, although still subject to 
the limitations of its underlying building blocks (or basis functions). 
 
However, for all of the methods discussed, if the regression function is equipped 
with a sufficient number of inputs and parameters, it is possible for the regression 
function to model the observed responses exactly. In this case one has modelled 
not only the underlying features of the data but also the noise inherent in the data -
the model has been overfitted. Choosing a regression function which has not been 
overfitted is a problem with which all the methods discussed in this paper must 
address. 
 
In the following subsections, I briefly discuss how this is done for each of the 
methods. 
 

2.2.1 GLMs 
 

When fitting a GLM model to data, it is necessary for the modeller to specify the 
inputs, interactions, and transformations to use in the regression function (as 
discussed in section 2.1.1). It is also necessary to specify the assumed statistical 
distribution of the response variable. Having done this, the parameters of the 
regression function can be estimated by maximum likelihood estimation. 
 
By using a statistical approach to parameter estimation, one is able to construct 
statistical tests. These can be used to assess whether the addition or removal of 
terms to the regression function has led to a statistically significant improvement 
in the model or to see whether the estimated coefficient of a particular input is 
statistically significant. By using these tests, and along with other considerations, 
the modeller attempts to construct a regression model which contains as few 
parameters as is necessary. 
 
So for GLMs the modeller uses statistical reasoning to choose a model 
architecture sufficient to model the underlying features of data without 
overfitting. 

 

2.2.2 Neural networks 
 

For neural networks we have seen that from the outset, the regression function has 
an architecture that is so flexible it is capable of overfitting the data. To prevent 
against overfitting, it is necessary to constrain the fitting so that the model only 
describes the underlying features of the data. 
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Before we discuss the approach used to protect against overfitting, it is important 
to realise some other distinctions between parameter estimation for neural 
networks as opposed to GLMs.  
 
Firstly, when applying neural networks (as well as MART and MARS) no 
assumption is usually made about the statistical distribution of the response. This 
means that the statistical tests that are used to protect against overfitting in GLMs 
are not available.  
 
In addition, by not adopting a statistical distribution for the response, it is not 
possible to estimate parameters by maximum likelihood estimation. For these 
methods, the parameters are typically estimated by specifying a loss function that 
needs to be minimised. This is typically the squared error loss function (or  “sum 
of squares” ). 
 
Given these considerations, the way that overfitting is prevented in neural 
networks is by adding a penalty function to the sum of squares error function 
which becomes larger as the regression function becomes less smooth. The 
penalty function is typically defined by 
 

)(  22 ∑∑∑ ++
m p

mp
m

m wWsquaresofsum λ   [2.6] 

 
where the Wm and wmp are the weight parameters from the neural network 
regression function (Eqn [2.4]). It is seen that the weight decay parameter, λ, 
controls the magnitude of the penalty. So by choosing a larger λ, we cause the 
fitted regression function to be smoother. 
 
A question still remains about how to best choose the weight decay parameter, λ. 
A typical way of determining this is by cross-validation. For cross-validation, we 
randomly divide our data into a training data set and a test data set. We then fit a 
number of neural network models to the training data using a number of values of 
λ. The sum of squares in the test data set is then determined for each of the 
models. The λ value that minimises the sum of squares in the test set, is the 
λ value that is chosen. 
 
The rationale behind cross-validation is that as the value of λ gets smaller, the 
regression function will become less smooth and start to fit the underlying 
features of the data. Because the underlying features of the data should be 
common to both the training and the test set, the sum of squares in both sets will 
decrease. However, as the value of λ continues to decrease, the function will 
begin to model the noise in the training set. Because the noise will be different in 
both the training and test data sets, the sum of squares in the test data set will start 
to increase. At this point we have begun to overfit the data. 
 
Note that cross-validation is generally used to fit both λ and the number of units 
in the hidden layer, M (Section 2.1.2). 
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2.2.3 MART and MARS 
 

For MART the problem of overfitting is addressed by specifying an appropriate 
size for each component regression tree, the number of regression trees that are 
added to the regression tree, as well as another tuning parameter termed the 
shrinkage parameter (for more details see Hastie et al., 2001). As for neural 
networks, the appropriate values of these tuning parameters are determined using 
cross-validation. 
 
For MARS, the problem of overfitting is addressed by choosing the appropriate 
number of terms to keep in the regression model. This too, can be determined by 
cross-validation. However, it is usually determined by a computationally more 
efficient method known as generalised cross validation (for more details see 
Hastie et al., 2001).   
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3 Case study 
 
The architectures and features of the soft-computing methods described above 
indicate that they may be useful for modelling accident compensation data, 
particularly where the data exhibit features that are difficult to model using 
traditional actuarial techniques such as the chain ladder. 
 
In their paper, “Loss Reserving with GLMs”, Taylor and McGuire (2004) present 
one such data set from a CTP portfolio. This data set was shown to have features 
such as 
 

• changes in the rate of claim finalisation; 
• legislative changes; 
• seasonality; and  
• superimposed inflation which varies by experience year and age of 

claims. 
 
In the paper, the authors comment that these features are not uncommon in 
accident compensation data and demonstrate how the traditional chain ladder has 
difficulty in coping with these features. They then go on to demonstrate how the 
architecture of the GLM provides an effective framework for dealing with these 
features. 
 
In the present paper, I investigate the possibility of using soft computing methods 
as an alternative to GLMs to model this data set. 
 

3.1 Data 
 

The data set relates to CTP insurance in one state of Australia. Following Taylor 
and McGuire we have restricted our analysis to a model of the average size of 
finalised claims. The justification for this choice can be found in their paper. 
 
The data set consists of a claim file consisting of approximately 60,000 claims. 
For each claim various items are recorded, including, the date of injury, date of 
notification, and histories of paid losses, case estimates and finalised/unfinalised 
status including dates of change of status. 
 
For this analysis, all paid loss amounts have been converted to 30 September 2003 
values in accordance with past wage inflation in the state concerned. A summary 
of the average sizes of finalised claims is provided in the Appendix. This is the 
usual triangular summary of data with rows representing accident quarters, 
columns development quarter, and diagonals calendar quarter of finalisation. In 
this triangle, each cell (i, j) represents the average size of all claims finalised in 
accident quarter, i and development quarter j. 
 
For our regression models we are interested in modelling the size of the rth 
finalised claim, Yr in terms of: 
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• ir = accident quarter = 1, 2, 3, …, 37 
• jr = development quarter = 0,1, 2, …, 36 
• kr = calendar quarter of finalisation = ir + jr 
• tr = operational time = proportion of claims incurred in accident quarter ir 

which have been finalised at development quarter jr 
• sr = season of finalisation = March, June, September, and December 

 
Hence for each of the different methods our regression function will have the 
general form: 
 

Yr = f(ir, jr, kr, tr, sr)    [3.1] 
 

3.2 Methodology 
 

All analysis was performed using the software “R”. This software is freely 
available at http://www.r-project.org/foundation/ and is widely used by academic 
statisticians. The algorithm packages nnet, gbm, and polspline were used for the 
neural network, MART, and MARS algorithms, respectively. 
 
For the analysis, individual finalised claim data were used rather than aggregated 
data. The tuning parameters of each of the soft-computing methods were 
determined by cross-validation. This involved constructing a training data set by 
randomly selecting 2/3 of the data, with the remaining 1/3 forming the test data 
set. The final models presented below were, however, fitted to the full data set. 

 

3.3 Results 

3.3.1 Summary of the GLM model from Taylor and McGuire (2004) 
 
The GLM model of the average size of finalised claims that was determined in 
Taylor and McGuire (2004) was 
 

            [3.2] 
 

E[Yr] = exp {α + βd
1 tr + βd

2 max(0,10-tr)  
 + βd

3 max(0,tr–80) +  βd
4 I(tr < 8) [Operational time effect]

  
 + βs I(kr=March quarter)    [Seasonal effect]
  
 + βf

1 kr + βf
2 max(0,kr – 2000Q3)  

 + βf
3 I(kr<97Q1)          [Finalisation quarter effect]

 
 + kr [βtf

1 tr + βtf
2 max(0,10-tr)] [Operational time x finalisation

  quarter interaction]
 
+ max(0,35-tr) [βta

1 + βta
2 I(ir > 2000Q3)]}           [Operational 

 time x accident quarter interaction]
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with the response assumed to follow an exponential dispersion family distribution 
with a variance power of 2.3 (Taylor and McGuire, 2004). A plot of the log of the 
regression function (the linear predictor) is shown in Figure 3.1.  
 
Eqn [3.2] and Figure 3.1 illustrate the complex features that are present in the 
finalised claim data. There are 5 main features: 
 

• Operational time effect: Because of changes in the rate of claims 
finalisation, the regression function includes an operational time effect 
rather than a development quarter effect. This effect shows that the 
average size of finalised claims increases with operational time. 

 
• Seasonal effect: Claims finalised in the March quarter tend to be slightly 

lower than other quarters. 
 

• Finalisation quarter effect: This represents superimposed inflation and 
indicates that there is a change in the rate of superimposed inflation before 
1997 and at the end of the September 2000 quarter. 

 
• Operational time and finalisation quarter interaction: This brings out the 

feature that smaller and larger finalised claims are subject to different rates 
of superimposed inflation. 

 
• Operational time and accident quarter interaction: This feature resulted 

from legislative changes that came into effect in September 2000. This 
legislation placed limitations on the payment of plaintiff costs and 
effectively eliminated a certain proportion of smaller claims in the system 
in all subsequent accident quarters. 

 
 

Figure 3.1 Plot of the linear predictor of Taylor and McGuire’s GLM model. 
To smooth these plots I have assumed that the rates of finalisation in each 
accident quarter are equivalent, and I have ignored the effect of seasonality. 
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3.3.2 Comparison of models 
 

The results of the soft-computing model fitting exercises are shown in the 
following six figures. Figures 3.2 and 3.3 show one-way plots of observed and 
fitted values for quarter of accident and development quarter, respectively. These 
plots show the average of all observed and fitted values at each value of quarter of 
accident or development quarter. These plots show that there seems to be no 
systematic bias in the model fits across accident quarter and development quarter, 
except for the latest few accident quarters where the data is sparser. Similar plots 
can be shown for quarter of finalisation and operational time. 
 
Even though there appeared to be no systematic biases in one-dimension, it is still 
possible that pockets of cells in a two dimensional plot will show systematic 
differences between observed and fitted values. To test for this possibility, the 
ratios of observed to fitted values for the accident quarter/development quarter 
triangles were constructed (Fig. 3.4). In each of these figures, the ratios are colour 
coded so that ratios greater than 100% are red, and those below 100% are blue. 
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GLM           Neural Network 

        
       MART                                                                    MARS 

      
 

Figure 3.2 One-way tabulations by accident quarter of observed and fitted 
average finalised claim sizes. All figures: red points = fitted; blue points = 
observed. 
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Figure 3.3 One-way tabulations by development quarter of observed and 
fitted average finalised claim sizes. All figures: red points = fitted; blue points = 
observed. 
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GLM    
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Sep-94 NA 31% 80% 154% 198% 141% 75% 80% 83% 73% 114% 100% 90% 69% 63% 101% 76% 45% 113% 231% 109% 154% 76% 81% 63% 51% 448% 5% 188% 154% 77% NA 106% NA 3% 324%
Dec-94 23% 104% 95% 100% 134% 120% 123% 97% 81% 124% 95% 86% 81% 139% 95% 91% 100% 92% 113% 90% 56% 99% 58% 94% 105% 202% 46% 56% 47% 81% 101% 145% 280% 298% 78% NA
Mar-95 23% 75% 96% 105% 99% 112% 89% 84% 98% 129% 158% 94% 84% 61% 65% 84% 68% 91% 103% 103% 66% 48% 68% 40% 108% 89% 253% 52% 46% 50% 192% 139% 160% 279% 77%
Jun-95 NA 57% 92% 112% 184% 117% 84% 98% 111% 88% 109% 112% 196% 138% 91% 102% 112% 118% 80% 86% 84% 67% 268% 222% 73% 257% 62% 98% 75% 196% 91% 172% 112% 90%   
Sep-95 6% 83% 112% 134% 106% 105% 92% 82% 120% 80% 87% 76% 95% 126% 49% 103% 147% 106% 142% 83% 50% 96% 45% 92% 115% 51% 54% 42% 668% 61% 140% 38% 20%    
Dec-95 127% 94% 90% 95% 90% 88% 93% 112% 78% 105% 83% 81% 115% 81% 131% 112% 133% 103% 110% 90% 70% 63% 94% 66% 62% 141% 58% 31% 54% 66% 63% 29%     
Mar-96 NA 101% 89% 78% 118% 80% 107% 70% 91% 76% 72% 92% 91% 109% 81% 109% 84% 135% 68% 180% 43% 56% 58% 60% 70% 74% 79% 119% 54% 482% 38%      
Jun-96 NA 77% 78% 94% 103% 91% 86% 103% 101% 79% 95% 140% 106% 101% 104% 151% 111% 89% 84% 68% 273% 66% 65% 197% 110% 122% 85% 76% 64% 103%       
Sep-96 78% 72% 107% 110% 108% 100% 96% 112% 120% 114% 104% 122% 114% 129% 112% 76% 81% 83% 104% 107% 202% 68% 103% 136% 130% 80% 179% 178% 232%       
Dec-96 NA 87% 120% 100% 83% 92% 117% 100% 82% 101% 100% 107% 75% 91% 126% 59% 93% 108% 191% 69% 80% 141% 258% 57% 50% 65% 208% 181%       
Mar-97 NA 91% 107% 100% 94% 81% 100% 119% 112% 86% 137% 91% 118% 80% 73% 91% 96% 131% 146% 103% 133% 57% 426% 110% 107% 38% 153%       
Jun-97 NA 122% 124% 96% 86% 77% 112% 86% 99% 101% 91% 81% 77% 75% 86% 113% 123% 115% 63% 81% 98% 76% 118% 34% 71% 51%       
Sep-97 2% 90% 92% 92% 98% 96% 93% 92% 91% 99% 110% 137% 88% 153% 111% 95% 75% 78% 57% 85% 103% 83% 420% 102% 116%       
Dec-97 94% 73% 112% 86% 89% 105% 84% 129% 119% 106% 87% 79% 129% 87% 86% 113% 68% 78% 96% 61% 131% 42% 76% 43%             
Mar-98 NA 96% 96% 104% 85% 92% 96% 94% 103% 88% 57% 100% 95% 81% 157% 91% 65% 78% 84% 137% 111% 65% 44%              
Jun-98 NA 112% 109% 103% 97% 98% 115% 114% 114% 77% 101% 91% 110% 127% 88% 136% 85% 73% 87% 52% 39% 67%               
Sep-98 114% 116% 123% 100% 111% 124% 112% 112% 112% 115% 135% 108% 128% 89% 107% 173% 102% 128% 128% 180% 71%                
Dec-98 NA 114% 108% 102% 112% 106% 99% 93% 126% 79% 104% 101% 80% 94% 127% 82% 113% 108% 82% 90%                 
Mar-99 8% 85% 109% 95% 86% 94% 70% 107% 84% 92% 87% 79% 72% 88% 79% 82% 68% 61% 80%       
Jun-99 5% 95% 93% 96% 91% 99% 110% 111% 113% 120% 103% 82% 84% 80% 152% 104% 73% 113%       
Sep-99 4% 90% 110% 97% 92% 111% 114% 103% 128% 99% 134% 93% 98% 104% 108% 130% 80%       
Dec-99 12% 124% 104% 90% 111% 92% 108% 109% 97% 113% 103% 93% 97% 75% 100% 97%       
Mar-00 112% 98% 86% 115% 86% 106% 93% 88% 93% 92% 94% 85% 143% 72% 80%                      
Jun-00 63% 92% 92% 82% 84% 91% 95% 95% 91% 85% 108% 104% 77% 90%                       
Sep-00 NA 138% 99% 81% 86% 114% 106% 120% 105% 94% 169% 98% 84%                        
Dec-00 8% 108% 103% 100% 84% 98% 91% 86% 86% 99% 101% 113%                         
Mar-01 29% 85% 106% 112% 85% 101% 104% 110% 98% 76% 80%                          
Jun-01 43% 98% 96% 76% 103% 97% 111% 110% 109% 85%          
Sep-01 42% 106% 94% 107% 132% 114% 87% 98% 79%           
Dec-01 45% 89% 93% 108% 118% 103% 114% 73%            
Mar-02 54% 72% 107% 116% 98% 110% 81%            
Jun-02 33% 102% 133% 113% 102% 110%                               
Sep-02 110% 88% 92% 107% 102%                                
Dec-02 251% 96% 110% 100%                                 
Mar-03 37% 73% 55%                                  
Jun-03 70% 46%                                   
Sep-03 3%                                     

 Neural Network 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Sep-94 NA 34% 59% 112% 155% 125% 76% 76% 84% 91% 121% 102% 91% 74% 61% 95% 72% 46% 107% 214% 102% 149% 70% 75% 58% 50% 398% 5% 162% 143% 67% NA 91% NA 3% 260%
Dec-94 38% 93% 81% 85% 118% 118% 117% 97% 95% 129% 95% 85% 86% 137% 93% 92% 107% 93% 117% 97% 63% 103% 58% 97% 108% 194% 45% 55% 46% 73% 89% 128% 247% 268% 70% NA
Mar-95 28% 85% 102% 98% 94% 102% 86% 94% 100% 127% 156% 99% 83% 60% 64% 86% 69% 94% 116% 121% 74% 50% 73% 43% 104% 83% 248% 52% 43% 45% 175% 126% 135% 257% 71%
Jun-95 NA 84% 105% 105% 160% 109% 89% 98% 108% 87% 115% 110% 188% 133% 89% 91% 101% 117% 87% 89% 87% 69% 284% 224% 71% 248% 60% 93% 71% 184% 86% 150% 102% 85%
Sep-95 18% 123% 114% 122% 102% 110% 91% 80% 118% 84% 88% 76% 96% 132% 47% 100% 155% 120% 154% 86% 54% 106% 47% 93% 116% 54% 55% 41% 649% 59% 137% 37% 19%
Dec-95 336% 112% 87% 98% 94% 85% 88% 108% 80% 107% 84% 82% 119% 77% 120% 110% 138% 102% 106% 92% 73% 64% 91% 64% 64% 134% 55% 31% 54% 61% 58% 26%
Mar-96 NA 132% 107% 89% 116% 78% 104% 71% 95% 79% 74% 96% 88% 103% 78% 109% 83% 134% 72% 198% 43% 57% 58% 64% 69% 71% 80% 125% 52% 457% 36%
Jun-96 NA 123% 100% 94% 99% 89% 85% 106% 104% 79% 97% 133% 98% 96% 99% 137% 103% 87% 89% 66% 267% 64% 68% 194% 110% 122% 89% 75% 63% 101%
Sep-96 251% 105% 106% 106% 106% 99% 99% 116% 122% 116% 101% 114% 109% 124% 102% 72% 82% 89% 104% 109% 208% 72% 103% 139% 136% 83% 169% 178% 233%
Dec-96 NA 90% 115% 102% 83% 96% 124% 103% 85% 102% 99% 108% 76% 86% 121% 63% 102% 115% 191% 74% 89% 148% 275% 63% 55% 68% 219% 190%
Mar-97 NA 94% 100% 97% 99% 85% 100% 120% 113% 86% 139% 91% 111% 72% 70% 91% 91% 125% 145% 108% 135% 60% 462% 125% 110% 38% 167%
Jun-97 NA 135% 116% 103% 93% 79% 112% 89% 104% 107% 94% 79% 74% 79% 95% 120% 128% 130% 73% 87% 110% 87% 141% 37% 80% 58%
Sep-97 3% 89% 89% 97% 101% 94% 94% 95% 94% 101% 109% 132% 89% 155% 109% 94% 76% 85% 58% 92% 119% 96% 431% 112% 126%
Dec-97 134% 67% 110% 91% 88% 108% 89% 135% 120% 106% 86% 81% 130% 83% 81% 116% 75% 84% 109% 71% 160% 46% 88% 49%
Mar-98 NA 86% 93% 106% 90% 99% 99% 92% 103% 89% 60% 103% 92% 77% 156% 96% 68% 84% 93% 161% 119% 72% 50%
Jun-98 NA 101% 99% 110% 104% 99% 107% 110% 111% 77% 96% 81% 99% 117% 81% 118% 82% 77% 97% 55% 42% 76%
Sep-98 149% 98% 105% 103% 113% 115% 106% 109% 110% 106% 119% 96% 117% 80% 90% 148% 93% 125% 119% 179% 73%
Dec-98 NA 96% 89% 105% 107% 103% 101% 99% 128% 79% 105% 107% 83% 93% 132% 93% 133% 119% 94% 107%
Mar-99 9% 77% 106% 95% 87% 95% 74% 105% 84% 94% 93% 82% 71% 93% 94% 101% 78% 74% 99%
Jun-99 7% 83% 92% 107% 95% 97% 100% 107% 112% 124% 102% 78% 84% 83% 156% 104% 79% 129%
Sep-99 5% 81% 114% 108% 93% 99% 106% 99% 129% 95% 128% 94% 105% 110% 108% 142% 94%
Dec-99 15% 126% 117% 100% 104% 90% 104% 110% 92% 108% 104% 100% 100% 71% 101% 105%
Mar-00 155% 116% 92% 124% 95% 107% 94% 82% 88% 93% 102% 88% 138% 75% 88%
Jun-00 142% 98% 99% 107% 94% 96% 88% 93% 94% 97% 115% 104% 83% 100%
Sep-00 NA 157% 125% 101% 103% 110% 104% 120% 115% 96% 164% 103% 91%
Dec-00 9% 98% 77% 85% 71% 91% 88% 91% 85% 97% 106% 124%
Mar-01 43% 93% 84% 96% 83% 92% 109% 106% 98% 81% 90%
Jun-01 181% 104% 80% 82% 95% 95% 106% 111% 114% 97%
Sep-01 102% 100% 98% 106% 130% 101% 89% 100% 90%
Dec-01 71% 121% 87% 112% 106% 103% 111% 82%
Mar-02 126% 96% 107% 110% 102% 102% 90%
Jun-02 177% 126% 110% 129% 98% 112%
Sep-02 279% 75% 95% 107% 108%
Dec-02 272% 104% 90% 99%
Mar-03 50% 66% 45%
Jun-03 95% 40%
Sep-03 3%  

 MART 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Sep-94 NA 36% 87% 143% 172% 133% 71% 82% 87% 84% 111% 104% 94% 75% 66% 114% 81% 44% 114% 242% 114% 170% 78% 90% 65% 52% 401% 5% 178% 157% 74% NA 90% NA 3% 280%
Dec-94 27% 120% 102% 95% 118% 113% 124% 102% 87% 118% 96% 88% 84% 143% 107% 97% 98% 94% 123% 102% 62% 103% 64% 97% 107% 185% 47% 54% 48% 78% 104% 123% 251% 276% 78% NA
Mar-95 29% 91% 107% 98% 90% 112% 91% 91% 89% 127% 162% 97% 85% 66% 75% 89% 66% 97% 118% 115% 70% 53% 70% 41% 104% 92% 259% 57% 48% 55% 173% 131% 143% 294% 77%
Jun-95 NA 70% 101% 107% 171% 112% 89% 90% 104% 90% 110% 113% 202% 147% 100% 107% 112% 121% 85% 90% 93% 71% 279% 212% 76% 261% 65% 99% 83% 176% 86% 154% 113% 90%
Sep-95 8% 100% 130% 146% 104% 109% 83% 77% 116% 83% 86% 78% 101% 140% 51% 103% 152% 112% 150% 89% 53% 105% 44% 99% 121% 57% 58% 48% 616% 59% 141% 41% 20%
Dec-95 159% 117% 110% 108% 93% 79% 88% 107% 75% 105% 87% 83% 121% 86% 140% 112% 132% 101% 116% 94% 73% 64% 104% 71% 68% 143% 64% 31% 57% 65% 67% 29%
Mar-96 NA 122% 106% 85% 103% 75% 104% 66% 90% 78% 75% 93% 92% 121% 83% 105% 81% 138% 72% 188% 43% 62% 62% 66% 71% 81% 80% 124% 53% 511% 38%
Jun-96 NA 95% 96% 86% 91% 88% 84% 96% 102% 81% 97% 135% 109% 108% 106% 139% 107% 86% 87% 70% 289% 70% 73% 203% 120% 130% 91% 75% 68% 104%
Sep-96 96% 93% 114% 107% 98% 95% 91% 107% 124% 115% 102% 120% 116% 137% 107% 70% 78% 82% 106% 113% 214% 74% 107% 151% 139% 87% 183% 190% 233%
Dec-96 NA 96% 126% 99% 76% 87% 113% 98% 84% 98% 100% 109% 79% 88% 118% 57% 89% 110% 203% 73% 88% 147% 286% 61% 55% 64% 220% 183%
Mar-97 NA 97% 119% 101% 88% 78% 98% 114% 111% 86% 135% 91% 118% 80% 68% 81% 90% 129% 149% 111% 136% 65% 461% 120% 110% 42% 154%
Jun-97 NA 133% 130% 93% 83% 77% 106% 84% 99% 102% 92% 79% 79% 71% 80% 110% 128% 131% 72% 88% 119% 87% 136% 37% 79% 54%
Sep-97 2% 93% 98% 90% 97% 93% 87% 90% 91% 98% 107% 138% 91% 148% 98% 91% 75% 84% 63% 99% 120% 99% 468% 120% 133%
Dec-97 96% 77% 118% 87% 86% 101% 80% 130% 117% 100% 86% 80% 131% 82% 82% 106% 71% 85% 111% 70% 158% 46% 90% 50%
Mar-98 NA 96% 104% 103% 83% 91% 92% 94% 98% 86% 56% 100% 99% 79% 157% 87% 66% 87% 97% 158% 123% 80% 51%
Jun-98 NA 115% 110% 105% 96% 98% 111% 109% 113% 76% 94% 87% 108% 132% 95% 134% 83% 77% 97% 57% 46% 80%
Sep-98 116% 106% 123% 105% 111% 126% 109% 108% 114% 108% 129% 105% 128% 93% 112% 181% 102% 124% 130% 201% 84%
Dec-98 NA 105% 105% 109% 113% 103% 97% 91% 121% 72% 105% 102% 86% 93% 121% 84% 119% 119% 96% 106%
Mar-99 8% 76% 115% 97% 87% 92% 70% 102% 80% 93% 86% 83% 75% 87% 79% 86% 74% 71% 94%
Jun-99 4% 86% 97% 98% 94% 100% 101% 108% 113% 122% 106% 83% 90% 86% 154% 96% 77% 126%
Sep-99 4% 80% 112% 104% 99% 106% 109% 101% 132% 104% 133% 97% 107% 106% 104% 131% 87%
Dec-99 10% 112% 109% 101% 110% 89% 111% 112% 104% 114% 107% 98% 102% 79% 104% 95%
Mar-00 98% 89% 91% 128% 90% 110% 101% 93% 98% 96% 97% 88% 148% 78% 84%
Jun-00 53% 79% 97% 98% 95% 101% 103% 97% 97% 90% 109% 106% 85% 95%
Sep-00 NA 118% 105% 99% 108% 131% 118% 126% 113% 96% 169% 105% 93%
Dec-00 5% 69% 73% 88% 81% 97% 100% 89% 89% 100% 109% 123%
Mar-01 18% 54% 80% 105% 84% 103% 114% 110% 103% 82% 87%
Jun-01 27% 69% 78% 78% 101% 98% 115% 111% 120% 94%
Sep-01 28% 72% 78% 104% 125% 109% 92% 105% 92%
Dec-01 29% 61% 70% 98% 104% 98% 127% 81%
Mar-02 38% 49% 86% 102% 89% 115% 98%
Jun-02 21% 70% 91% 100% 100% 117%
Sep-02 79% 58% 71% 109% 111%
Dec-02 171% 69% 86% 102%
Mar-03 33% 63% 50%
Jun-03 60% 42%
Sep-03 3%  

 MARS 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Sep-94 NA 42% 109% 206% 241% 163% 80% 83% 83% 80% 108% 98% 88% 69% 60% 101% 75% 45% 109% 227% 103% 144% 69% 77% 57% 46% 369% 4% 146% 122% 57% NA 74% NA 3% 303%
Dec-94 27% 132% 133% 132% 164% 135% 135% 101% 87% 112% 89% 81% 78% 135% 99% 96% 106% 96% 127% 100% 62% 103% 61% 95% 101% 183% 43% 50% 40% 63% 78% 107% 197% 210% 91% NA
Mar-95 26% 97% 134% 136% 117% 127% 95% 89% 85% 118% 146% 89% 80% 62% 66% 85% 72% 103% 121% 120% 74% 52% 73% 40% 99% 80% 230% 46% 38% 40% 148% 102% 108% 205% 89%
Jun-95 NA 72% 128% 138% 219% 128% 89% 85% 101% 82% 102% 102% 191% 135% 87% 92% 109% 122% 86% 91% 92% 69% 270% 215% 70% 232% 53% 83% 64% 158% 70% 122% 82% 66%
Sep-95 7% 105% 143% 178% 125% 117% 82% 76% 113% 77% 82% 78% 98% 131% 49% 109% 161% 121% 157% 92% 55% 101% 46% 93% 110% 48% 49% 37% 566% 49% 113% 31% 15%
Dec-95 145% 109% 114% 121% 106% 80% 86% 103% 72% 97% 83% 82% 117% 79% 130% 114% 138% 105% 114% 93% 71% 63% 92% 61% 58% 123% 51% 28% 46% 51% 49% 21%
Mar-96 NA 120% 113% 100% 116% 79% 103% 67% 87% 78% 74% 94% 89% 111% 80% 110% 86% 145% 73% 192% 42% 58% 56% 58% 64% 67% 71% 106% 44% 389% 29%
Jun-96 NA 90% 103% 98% 104% 88% 80% 93% 97% 76% 93% 131% 103% 98% 99% 141% 111% 89% 86% 65% 274% 62% 63% 181% 105% 110% 77% 65% 54% 83%
Sep-96 86% 82% 110% 120% 109% 96% 86% 106% 115% 111% 97% 117% 110% 124% 105% 78% 84% 87% 104% 112% 203% 67% 97% 134% 125% 72% 148% 156% 196%
Dec-96 NA 79% 128% 107% 84% 86% 114% 99% 83% 99% 102% 109% 76% 89% 131% 64% 100% 115% 199% 72% 83% 141% 266% 58% 48% 60% 195% 161%
Mar-97 NA 85% 105% 106% 91% 78% 95% 116% 107% 86% 137% 91% 113% 78% 71% 90% 92% 130% 143% 102% 129% 59% 430% 111% 99% 34% 144%
Jun-97 NA 111% 123% 101% 89% 77% 112% 85% 104% 107% 96% 80% 80% 80% 94% 121% 135% 128% 69% 84% 108% 82% 126% 33% 73% 50%
Sep-97 2% 80% 92% 100% 100% 93% 85% 89% 90% 102% 110% 141% 89% 154% 110% 98% 74% 81% 57% 91% 112% 86% 396% 103% 111%
Dec-97 83% 63% 118% 94% 91% 100% 83% 130% 124% 107% 91% 81% 131% 84% 85% 114% 72% 83% 109% 68% 145% 43% 82% 44%
Mar-98 NA 82% 98% 114% 84% 91% 95% 95% 103% 92% 59% 104% 93% 80% 153% 93% 67% 84% 88% 147% 111% 68% 45%
Jun-98 NA 94% 108% 107% 99% 94% 109% 106% 109% 73% 95% 81% 100% 113% 78% 117% 82% 73% 90% 52% 39% 69%
Sep-98 97% 95% 106% 106% 111% 117% 98% 102% 102% 104% 116% 94% 109% 77% 89% 146% 89% 116% 115% 170% 67%
Dec-98 NA 88% 95% 110% 115% 102% 102% 98% 136% 81% 108% 103% 82% 93% 134% 89% 125% 115% 90% 98%
Mar-99 7% 67% 109% 106% 87% 97% 74% 114% 86% 95% 88% 82% 72% 94% 91% 96% 77% 72% 92%
Jun-99 4% 73% 97% 104% 95% 98% 110% 107% 111% 115% 101% 79% 84% 79% 149% 103% 76% 120%
Sep-99 3% 70% 100% 106% 94% 108% 102% 95% 117% 95% 130% 94% 100% 106% 108% 139% 88%
Dec-99 9% 94% 107% 102% 116% 87% 101% 101% 94% 109% 104% 94% 98% 72% 99% 99%
Mar-00 86% 79% 84% 131% 88% 105% 88% 85% 89% 93% 96% 87% 141% 74% 83%
Jun-00 50% 65% 90% 92% 92% 94% 97% 96% 97% 92% 117% 107% 82% 95%
Sep-00 NA 101% 87% 91% 97% 120% 103% 124% 110% 99% 170% 102% 87%
Dec-00 4% 46% 53% 72% 73% 87% 92% 88% 89% 100% 106% 117%
Mar-01 14% 38% 57% 90% 75% 99% 109% 117% 102% 83% 86%
Jun-01 22% 50% 66% 68% 101% 99% 122% 117% 120% 93%
Sep-01 22% 53% 60% 102% 134% 120% 93% 109% 87%
Dec-01 24% 40% 61% 98% 121% 105% 127% 82%
Mar-02 28% 39% 79% 120% 101% 122% 94%
Jun-02 18% 54% 97% 108% 110% 118%
Sep-02 62% 48% 66% 116% 115%
Dec-02 144% 46% 73% 91%
Mar-03 21% 36% 33%
Jun-03 42% 23%
Sep-03 2%  

Figure 3.4 Colour coded tabulations of observed to fitted average claim sizes. 
Tabulations are accident quarter by development quarter. All figures: red squares 
indicate observed greater than expected; blue squares indicate observed less than 
expected. 
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Both the GLM and neural network models show a reasonable random scatter of 
colour indicating no systematic deviations in model fit. This is less so for the 
MART and MARS models. For the MART model, the region in the bottom left 
hand quarter of the triangle shows poor model fit, while for MARS, the entire 
triangle below development period 6 is a region of poor model fit. 
 
In order to better appreciate the features of the data set that have been modelled 
by each of the methods, 3 dimensional plots of the regression functions were 
plotted (Fig. 3.5). For each of the models, two plots were produced. The plot on 
the left hand side shows the logarithm of the average size of finalised claims 
plotted as a function of accident quarter and development quarter. This is 
effectively a three dimensional accident quarter/development quarter triangle. 
However, note that the plot is not a triangle as the missing part of the triangle has 
been filled in by projecting with the models. 
 
The plots on the right hand side show the logarithm of the average size of 
finalised claims as a function of quarter of finalisation and development quarter. 
These plots are effectively a transformation of the left hand side plots that were 
created by taking the top left hand corner of each plot and dragging it to the top 
right hand corner. Note that in these plots only the historical region of the triangle 
is observed as the projected region has been rotated out of view. The two types of 
plot allow the features of the regression function to be viewed from different 
perspectives. 
 
These plots show that the regression functions all have a similar overall shape: 
however the actual form in each case is constrained by the underlying architecture 
of the model. For example: 

 
• The linear predictor for the GLM model has been constructed using a 

mixture of linear splines, interaction terms, and other input 
transformations. This produces a regression function containing smooth 
surfaces, discontinuities, and broken trends.  

 
• The neural network model has a single-hidden layer so is constrained to 

being a smooth continuous surface. 
 

• The MART model is the sum of a number of individual piecewise constant 
functions and hence is constrained to producing a piecewise constant 
regression function. 

 
• The MARS model is constrained to a mixture of liner splines and 

interaction terms constructed out of those splines. Note for space reasons 
we have not shown the plots of the MARS regression function in Fig. 3.5.  
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GLM 

 
Neural Network 

 
MART 

 
Figure 3.5 Comparison of log(average size of finalised claims) from three 
models 
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As a test of the predictive accuracy of the models, each model was fitted to a 
training data set which consisted of 2/3 of the data. The remaining 1/3 of the data 
was then used to test the predictive accuracy of each model. Two measures of 
predictive accuracy were used: the sum of squares of the differences between 
observed and fitted values in the test set, and the average absolute error of these 
differences (Table 3.1). The results indicate that with the exception of MARS, the 
soft-computing techniques outperformed the GLM in predictive accuracy by both 
measures. 
 
Table 3.1 Test errors for the four regression models 

 
Model Sum of squares Average Absolute Error 

GLM 2.000 x 1014 33,777 
Neural Network 1.996 x 1014 33,476 
MART 1.999 x 1014 33,290 
MARS 1.994 x 1014 33,806 

 
 

3.3.3 Projections of claim size  
 

An important part of any reserving or pricing analysis is to project estimates into 
future periods.  For example, in the Taylor and McGuire paper, the GLM model 
was used to project the average size of finalised claims into future finalisation 
quarters for each historical accident quarter. By combining these projections with 
a model of claims finalisation, estimates of incurred loss by quarter of accident 
were made. 
 
Figure 3.6 shows the projections of the average size of finalised claims for the 
four models. It is apparent that the projections made by each of the models are 
quite different; Both the GLM and MARS model project continued superimposed 
inflation, while both the neural network and MART appear to project negative 
superimposed inflation.  

 

3.3.4 Use of neural networks in GLM modelling 
 

One of the difficulties of GLM modelling is determining the appropriate 
interactions to include in the GLM regression function. This is an area where the 
skill of the model builder can play a large part in determining how well the 
regression function will model the data.  
 
To see whether the adaptive non-linear modelling capability of neural networks 
could help identify which interactions to include in a GLM model, a neural 
network was fitted to a residuals from a main effects GLM model. A main effects 
model is one in which no interaction terms have been included. The results of the 
analysis are shown in Fig. 3.7. In these plots I have assumed that the rates of 
finalisation in each accident quarter are the same.  

 



 21 

       GLM                       Neural Network 

 
   MART                                                              MARS 

 
 
Figure 3.6 Comparison of projections of the average size of finalised claims 
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Figure 3.7 Neural Network fit to the residuals from the main effects GLM 
model 

 
 

The figure clearly shows that there are some discernable features left in the GLM 
residuals. The clearest feature is that it appears that there is a strong interaction 
between quarter of finalisation and development quarter (or operational time). 
This is clearly seen in the right hand figure. The interaction between development 
quarter (or operational time) and accident quarter is also seen in the front corner 
of the left hand figure. 
 
However, while the neural network allows one to visualise the features left in the 
residuals of a main effects model, it does not translate this into the specific 
interactions that need to be included in the GLM model. This requires judgement 
from the modeller and may not always be obvious from plots such as Figure 3.7. 
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4 Discussion 
4.1 Performance of soft-computing methods for the data 

 
Both neural networks and MART were effective in modelling the complex 
features of the motor injury data set. Both these methods were able to produce 
sum of squares and average absolute errors of the test data set that were lower 
than those produced by the GLM model. However, I found MARS to be 
somewhat less effective. 

 
Although I did not have as much success with the MARS algorithm for this 
exercise, others, on different problems have found more success (e.g., Kolyshkina 
et al., 2004). This illustrates, that the success of a particular method depends to a 
large extent on how appropriate the method’s architecture is to the problem. This 
will not always be apparent at the outset and it often desirable to try a number of 
different methods.  

 
The regression functions were produced by the soft-computing algorithms in a 
largely automated manner greatly increasing the speed of model construction. I 
was able to produce each of the soft computing models in about half a day 
compared with the one to one and a half days work required for the GLM model. 
However, the soft computing methods were not completely automated. I found 
that some skill/experimentation was required to get optimal performance out of 
each algorithm.  
 
A disadvantage of using these largely automated algorithms is that it can be 
difficult to incorporate external information into model construction. An example 
of this is the change of legislation that came into effect in the September 2000 
quarter. The knowledge of this change influenced the construction of the GLM 
model and the resultant model showed an abrupt change in the average claim size 
at early operational times after September 2000. While these changes were 
detected in the neural network and MART models, these methods did not model 
the effects of the legislation as effectively as the GLM. Part of the reason for the 
poor performance appears to be model architecture. For example, the single layer 
neural network has an architecture which cannot model abrupt changes.   
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4.2 Projection with soft-computing methods 
 

An area where neural networks and MART performed poorly was projection. An 
important part of any reserving or pricing analysis is to project estimates into 
future periods. However, a feature of the neural network and MART regression 
functions that makes this very difficult is that they are very complex. For 
example, the neural network regression function that was fitted to the finalised 
size data had the form of Eqn [2.4] with 161 weight parameters while the MART 
regression function consisted of 86 regression trees each with 4 parameters. This 
compares to the 13 parameters in the GLM model. 
 
The complexity of these functions has led some to label these methods as “black 
box” methods. This “black box” nature makes it difficult to discern what features 
of the data are being extrapolated and also gives less control over this 
extrapolation. Also as the regression functions are only fitted over the range of the 
input values in the data set, the complex nature of the functions means that their 
behaviour outside the input data ranges will often be hard to predict. In other 
words, the complex models tend to be less robust for projections. 
 
Hence, projection is an area where GLMs have a clear advantage. The process of 
manually constructing the regression function for a GLM gives the modeller more 
control over how the features of the data should be extrapolated into the future. 
Thus, any the features and trends included in any GLM projection are transparent 
and explicit. 
 

4.3 GLMs vs soft-computing methods in loss reserving and pricing 
 

Because of the limitations specified above, it seems preferable to use GLM 
models as the primary tools for performing reserving and pricing projections. 
However, as demonstrated above, the ability of soft-computing methods to 
automatically model the complex features of a data set, mean that soft-computing 
methods may play important roles in model verification and checking.  
 
One way soft-computing methods could be used in model verification is as a 
general check on the GLM model. If the GLM was giving sums of squares or 
average absolute errors that were significantly larger than those obtained with the 
soft-computing techniques, there might be reason to believe that the GLM 
regression model needed some refinement. A second possible use is to help 
visualise some of the remaining features in the data after a GLM model has been 
fitted. This was illustrated in section 3.3.4 and could assist in determining the 
interaction terms to include in a GLM model. 
 
A final advantage of using GLMs for reserving and pricing projections is that  
GLMs makes it easier to perform meaningful experience analysis. Because GLMs 
make specific distributional assumptions about the response variable, it is 
relatively easy to determine confidence intervals about predictions, and hence to 
make statistical assessments of whether experience has been significantly 
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different to expected. This kind of analysis is not so readily available when using 
the soft computing methods described above. 
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7 Appendix – Average sizes of finalised claims 
 

 
 

accident
quarter 0 1 2 3 4 5 6 7 8 9

Sep-94 2,382 5,594 14,548 23,662 20,845 13,393 15,952 20,187 25,363
Dec-94 1,735 7,483 8,005 9,761 16,670 18,494 21,625 20,482 22,610 36,551
Mar-95 1,636 5,401 8,415 11,250 12,939 16,427 15,306 19,423 23,650 38,433
Jun-95 4,201 8,235 10,865 21,174 15,658 15,338 19,380 26,883 26,601
Sep-95 433 5,741 8,290 12,863 11,326 16,024 14,984 15,849 32,440 27,282
Dec-95 9,060 5,734 6,634 8,514 10,810 11,168 14,994 24,945 21,316 35,263
Mar-96 6,532 7,028 8,476 13,478 12,324 21,493 16,797 26,858 29,239
Jun-96 4,820 6,896 8,456 11,891 13,291 15,259 23,460 30,592 27,762
Sep-96 5,307 4,384 7,214 10,427 13,090 14,603 17,752 28,077 34,566 42,847
Dec-96 3,967 7,915 9,696 9,805 14,188 25,250 24,684 28,015 39,882
Mar-97 4,351 6,578 8,504 11,132 13,294 19,350 32,097 37,282 34,748
Jun-97 6,340 7,701 9,328 12,174 13,587 25,875 25,577 36,860 45,901
Sep-97 73 4,063 6,393 9,849 13,056 16,439 19,525 25,478 33,226 44,113
Dec-97 5,013 3,749 8,501 9,059 12,652 19,397 20,228 39,553 47,096 49,009
Mar-98 4,069 6,720 11,608 11,671 17,624 23,852 30,306 39,476 43,025
Jun-98 5,032 7,769 10,571 13,827 17,887 26,926 31,734 40,262 32,682
Sep-98 5,828 5,832 7,420 10,149 14,871 21,627 23,007 31,026 37,829 45,701
Dec-98 5,181 6,660 11,127 16,982 20,827 28,255 33,628 56,021 37,895
Mar-99 401 3,986 8,292 11,595 14,073 21,779 21,256 39,558 35,930 45,572
Jun-99 111 4,363 7,990 11,984 15,102 21,380 30,718 35,818 43,731 53,315
Sep-99 97 4,207 7,420 11,354 14,234 21,926 25,532 29,806 44,528 43,578
Dec-99 547 5,663 8,785 11,578 18,106 17,596 26,086 31,767 35,942 48,759
Mar-00 5,050 4,509 6,763 14,539 13,408 20,166 22,155 27,151 34,228 43,820
Jun-00 1,940 3,922 6,948 10,001 13,678 18,518 26,127 31,930 39,958 45,756
Sep-00 6,157 6,876 9,850 13,739 23,564 26,500 41,375 45,000 48,456
Dec-00 147 2,464 3,807 7,235 10,462 16,988 22,767 27,905 35,336 47,889
Mar-01 396 2,231 4,251 9,510 11,317 20,115 29,005 39,125 41,250 39,670
Jun-01 1,271 3,060 5,628 7,615 15,559 20,652 33,051 40,138 49,832 43,731
Sep-01 898 3,317 4,878 11,581 21,188 25,352 25,003 37,460 35,387
Dec-01 678 2,463 4,966 10,511 18,989 21,111 35,324 28,008
Mar-02 1,594 2,429 6,579 14,210 15,408 26,188 26,690
Jun-02 1,017 3,443 7,947 11,497 17,380 23,825
Sep-02 1,394 3,072 5,600 14,098 18,272
Dec-02 8,102 2,905 6,081 10,007
Mar-03 1,013 2,392 2,652
Jun-03 2,327 1,400
Sep-03 59

development quarter of finalisation
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accident
quarter 10 11 12 13 14 15 16 17 18 19

Sep-94 38,981 45,863 43,155 40,948 35,908 79,834 65,785 37,000 102,906 262,773
Dec-94 33,065 32,703 37,365 78,315 69,108 72,480 94,207 93,147 139,178 114,821
Mar-95 57,613 41,147 42,031 37,687 45,913 68,820 64,777 104,722 134,404 141,225
Jun-95 41,032 49,272 101,466 78,637 64,070 75,045 97,381 117,429 92,234 110,545
Sep-95 33,960 36,892 53,606 82,564 36,676 89,167 149,679 123,365 178,941 108,499
Dec-95 34,086 40,123 65,550 53,308 93,931 94,785 131,331 106,164 123,663 115,566
Mar-96 30,093 47,875 50,320 73,979 60,599 95,555 79,094 153,636 84,868 216,397
Jun-96 39,983 67,740 60,913 67,250 78,248 121,485 105,823 89,606 100,151 81,515
Sep-96 42,509 60,787 64,080 84,732 81,474 69,821 82,547 93,824 121,783 142,849
Dec-96 46,771 58,639 49,350 64,319 104,134 57,695 100,423 115,642 218,638 92,438
Mar-97 66,464 51,580 70,439 57,971 58,495 82,164 87,609 141,490 168,964 130,546
Jun-97 48,392 45,413 52,464 58,820 78,146 109,606 137,301 142,201 83,567 109,264
Sep-97 55,427 83,651 57,813 114,059 88,783 75,094 75,506 88,514 65,035 119,652
Dec-97 48,775 48,073 89,093 63,252 72,469 101,136 73,730 93,165 134,379 76,378
Mar-98 31,026 63,288 60,886 57,705 128,024 86,192 62,702 95,530 108,612 174,022
Jun-98 46,875 47,891 63,811 76,160 63,667 106,801 81,854 81,477 108,414 69,581
Sep-98 55,025 54,074 71,146 55,322 74,652 134,479 91,283 126,607 141,252 217,591
Dec-98 58,810 63,307 57,124 72,602 116,566 86,935 130,781 122,363 110,631 134,531
Mar-99 46,377 49,490 51,105 75,895 80,459 92,833 83,014 81,526 118,238
Jun-99 52,992 47,720 57,234 62,371 126,934 96,335 82,298 141,547
Sep-99 67,518 59,729 69,221 83,279 94,824 138,272 94,214
Dec-99 56,099 57,395 69,656 55,780 89,280 94,104
Mar-00 53,568 55,077 101,005 55,766 74,750
Jun-00 65,777 70,131 59,887 77,433
Sep-00 93,585 64,453 60,465
Dec-00 58,789 73,588
Mar-01 49,258
Jun-01

development quarter of finalisation

accident
quarter 20 21 22 23 24 25 26 27 28 29

Sep-94 129,349 195,633 101,579 121,257 95,978 84,158 712,264 8,764 316,169 282,728
Dec-94 79,351 135,363 90,855 145,021 172,933 335,296 84,477 104,109 87,098 146,445
Mar-95 97,834 70,355 110,518 65,824 172,169 148,164 452,372 84,431 84,166 78,663
Jun-95 121,116 98,383 411,325 352,690 121,433 431,789 104,799 174,005 128,565 374,070
Sep-95 73,437 144,988 71,009 152,943 193,406 91,006 98,609 70,139 1,273,300 116,584
Dec-95 94,241 90,905 141,854 100,275 102,849 230,998 102,517 59,253 103,639 105,413
Mar-96 56,632 84,235 75,801 97,496 114,575 126,450 144,496 227,986 91,890 780,581
Jun-96 371,135 90,167 98,013 304,316 188,162 210,869 156,466 140,817 124,941 202,313
Sep-96 277,303 97,799 153,110 215,742 225,600 139,336 259,511 339,882 362,793
Dec-96 110,092 209,851 426,546 93,455 87,416 116,867 323,074 355,008
Mar-97 168,714 85,802 692,725 190,969 181,670 51,736 300,118
Jun-97 153,029 124,170 205,154 58,125 118,166 87,164
Sep-97 159,195 130,970 644,990 179,757 206,863
Dec-97 207,985 65,860 135,046 61,946
Mar-98 159,924 97,588 74,291
Jun-98 54,887 107,701
Sep-98 94,013
Dec-98

development quarter of finalisation

accident
quarter 30 31 32 33 34 35 36

Sep-94 139,507 201,849 6,200 633,545
Dec-94 191,107 276,459 537,824 608,937 166,449
Mar-95 366,509 265,796 297,888 595,605 165,077
Jun-95 174,706 320,567 228,614 192,673
Sep-95 285,658 81,822 41,975
Dec-95 123,129 56,756
Mar-96 73,749
Jun-96

development quarter of finalisation


