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Asset Allocation in the light of Liability Cash Flows 

 
 

 

 

 

Abstract 

 

Asset allocation is one of the most important investment decisions that 
financial institutions have to make. Modern portfolio theory suggests that an 
optimal asset portfolio is one which maximises the return of the portfolio at a 
certain level of risk which is defined as the variance of the portfolio. In the 
light of liability cash flows, modern portfolio theory can be extended by 
regarding a liability as a negative asset. However, non-normal features of 
both asset return and liability features are always witnessed in reality and 
the appropriateness of defining risk as the variance of the ultimate surplus 
that assets have over liability is always questionable.  
 
In this paper, instead of defining risk as the variance of portfolio, the authors 
define risk as the probability of insolvency and derive the optimal asset 
portfolios thereafter. Both assets and liabilities are assumed to follow certain 
stochastic process. Four different stochastic investment models are 
examined and compared. Asset portfolios based on different approaches are 
also contrasted. 
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Introduction  

 

Asset allocation is one of the most important investment decisions that 

financial institutions have to make. Modern portfolio theory suggests that an 

optimal asset portfolio is one which maximises the return of the portfolio at a 

certain level of risk which is defined as the variance of the portfolio. In the 

light of liability cash flows, both liabilities and assets need to be taken into 

account. Early and more recent asset/liability portfolio models include 

Wise(1984a/b), Wilkie (1985), Sharpe and Tint (1990), Elton and Gruber 

(1992), Leibowitz et al. (1992), Keel and Müller (1995), Hürlimann  

(2001,2002) etc.  

 

Wise (1984) defines ‘closest match asset portfolio” to a liability as the one 

which will minimise the square of ultimate surplus. The ultimate surplus is 

measured in terms of the realizable market value of the assets remaining 

when all liabilities have been extinguished. This paper also illustrates an 

approach to find a matching portfolio with a worked example. This approach 

assumes derministic liability cash flows and a stochastic investment return 

model. This algorithm of the approach is not affected if either the cash flow 

of assets or liabilities is linked to inflation. The paper also points out the 

market value of a matching portfolio may be thought of as another technique 

of valuation. Though it may be argued that a valuation by matching is 

inappropriate because if the result is a mean ultimate surplus of about zero 

then there will be roughly a 50% chance of a deficiency, a margin can be 

applied to the market value of the matching portfolio to ensure positive 

surplus at a desired level of probability. The paper also illustrates how this 

approach can be applied to identify a matching portfolio for a pension fund.  

 

Wilkie (1985) points out that the closest matching portfolio identified by 

Wise(1984) might not be the efficient portfolio, and even if it is efficient 

under some circumstances, it might not be the most optimal portfolio for a 

particular investor. 

 

Wilkie (1985) argues that rational investor must take account of the prices of 

securities in order to choose an optimal portfolio. Therefore, Wilkie considers 

feasible portfolios in the space P-E-V, where P represents the aggregate price 
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of all assets in the portfolio, E the expected ultimate surplus of assets net of 

liabilities on completion of the liability cash flows and V the variance of 

ultimate surplus. Wilkie has therefore generalized conventional portfolio 

theory by including the price P of the portfolio as a third dimension. In the 

conventional theory (described by for example by Moore), only E and V are 

considered because, in the absence of fixed unmarketable liabilities, the 

proportions of assets to be held in the selected portfolio will be the same 

whatever the value of P. In order to identify the efficient portfolio, he 

assumes that investors are in favour of a high expected surplus, E, low 

variance of surplus, V, and a low immediate price, P. Wilkie also shows how 

the particular preferences of an investor can be expressed and used to select 

particular portfolios from the range of efficient portfolios. 

 

Keel and Müller (1995) discuss in detail the set of efficient portfolios in an 

asset/liability model. The authors put the asset/liability problem in a very 

close relationship to traditional mean variance portfolio theory. The authors 

assume the first and second moments of the growth rate of liabilities and all 

assets are known. The covariance matrix of both the growth rates of 

liabilities and assets are also assumed to be known. Under the methodology 

of Markowitz, the authors derive efficient portfolios which minimize the 

variance of surplus of assets over a liability in the next period for any desired 

mean of the surplus. They point out that the occurrence of liabilities leads to 

a parallel shift of the efficient set. They also show how a shortfall constraint 

such as that the probability of the ratio of asset value to liability is below one 

can be reconciled with efficiency. They also extend the standard version of 

CAPM and show how the risk premium for assets whose return is strongly 

correlated with the growth rate of market representative liabilities might be 

determined. 

 

Hürlimann (2001) proposes a portfolio selection model based on the expected 

return of the assets and the economic risk capital (ERC) associated to the 

asset liability portfolio, in the context of asset and liability management. For 

short, the author calls it mean-ERC asset liability portfolio selection. 

Economic risk capital refers to the amount of fund that a portfolio manager 

has to borrow in order to be able to cover any loss with a high probability. 

There exist several risk management principles applied to determine ERC. 
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Two simple methods are the value-at-risk and the expected shortfall 

approach. The author finds that Mean-ERC efficiency in asset and liability 

management is closely related.  

 

Hürlimann (2002) defines portfolio shortfall risk as the expected shortfall 

deviation of a portfolio from the mean return and the natural risk 

contribution of each portfolio asset to the portfolio shortfall risk as the 

shortfall risk of the asset. By replacing the variance as a measure of risk in 

the classical portfolio selection model with the shortfall risk the author 

proposes an alternative approach to portfolio selection, namely mean-

shortfall portfolio selection. The author proves that for the multivariate 

elliptical return distributions, both the mean-variance and mean-shortfall 

approach lead to the same conclusions. However, using more general 

marginal distributions of return, say lognormal returns, the two approaches 

will yield different results. 

 

Service and Sun (2003) argue that overriding any considerations of 

theoretical asset/liability profiles insurers must ensure that they remain 

solvent at all times. As a result if the assets become less than the liabilities 

the ‘game’ is over. Hence any definition of “closest match” must take into 

account the probability of insolvency. They, therefore, define a “closest” asset 

match as the asset portfolio which, for a given probability of insolvency, 

requires lowest initial asset value. In their worked example, the authors 

show an approach to identify the closest matching asset portfolio for a 

particular portfolio of liabilities when both are comprised of stochastic 

cashflows. 

 

In this paper, we adopt the definition of “closest” asset match proposed by 

Service and Sun (2003) and compare the resulting “closest” asset match by 

using different stochastic asset models. The stochastic asset models 

examined include Random Walk model [“RW”], Carter’s model (1991) [“JC”], 

Vector AR(1) model [“VAR”], Regime Switching Vector AR(1) model (Harris, 

1999) [“RSVAR”]. 

 

Data is also split into in-sample data and out-of-sample data, so that the 

goodness-of-fit of the asset models examined may be compared. 
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Using a VAR(1) model, we also compare the resulting asset portfolios if we 

use different three different approaches, namely Service and Sun’s  “closest 

asset match” approach, minimization of expected squared ultimate surplus 

approach, and minimization of expected shortfall approach. 

 

3  Models and Data 

Data and methodology applied in this paper is very similar to that applied in 

Service and Sun (2003), but three more asset models are added for 

comparison. For the convenience of the readers, we restate it here with some 

modification due to the addition of more stochastic asset models. 

 

3.1 Liability Data 

In this paper, we suppose there exists a hypothetical portfolio of long tail 

outstanding claims which runs off in ten years’ time and where payments of 

claims are made at the end of each quarter. The hypothetical claims 

payment experience was set out in Service and Sun (2003). 

 

The claims cashflow model uses the stochastic chain-ladder method 

suggested by Renshaw and Verrall (1998) and cashflows are then further 

adjusted by both general inflation and super-imposed inflation. General 

inflation is simulated stochastically by using the asset model and 

superimposed inflation is assumed to be 8% p.a. constantly. 

 

3.2 Data required to estimate the parameters of the Asset Models 

 

Economic Variables Measurement 

Inflation Rate CPI 

Short-term fixed interest rate 90-Days Bank Accepted 
Bills 

Long-term fixed interest rate 10-year Government 
Bond 

Share dividend yield 

Difference between 
return of AOI 
Accumulation index and 
AOI price index 

Dividend 
Dividend Yield times 
AOI Price Index in 
previous year 

Share price return Return of AOI Price 
Index 



 7 

Real Gross National Income  Australian Real Gross 
National  Income 

 

The CPI, Real Gross National Income and the AOI Price Index were collected 

from Datastream and the AOI Accumulation Index was collected from the 

Australian Stock Exchange. Both the yield of 90-day Bank Accepted Bill and 

10-year government bond were obtained from the Reserve Bank. 

 

3.3 Stochastic liability model 

Renshaw and Verrall (1998) present a statistical model underlying the chain-

ladder technique. They show that the estimates produced by the chain-

ladder method is equivalent to a generalised linear model (GLM) with a log 

link function relating to the mean of the responses and a Poisson 

distribution for error structure, i jµ α β+ +  as linear predictor. Namely, 
 

ijY ~Poisson with mean mij, independently ,i j∀  

where: 

log ij i jm µ α β= + +   

and  1 1 0α β= =  
 

Yij represents the increment claim amount reported with accident time index 

i and delay index j. 

 

Renshaw and Verrall (1998) also point out that it is easy to write down a 

quasi-likelihood, which allows for the variance relationship with the mean to 

be user specified rather than being fixed according to the distribution 

function of the error distribution. This will allow the model to be applied to 

negative incremental claims and the results are always the same as those by 

the chain-ladder technique when 
1

1
0

n j

iji
Y

− +

=
≥∑ , where n is the maximum of 

delay index. They also point out the chain-ladder method will be more 

appropriate if the run-off triangle consists of claim numbers rather than 

claim amounts. In the light of this, instead of using Poisson distribution for 

errors, Gamma, log-normal or inverse-Gaussian distribution may be used for 

claim size. 
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In this paper, a gamma distribution is assumed for error distribution, log as 

the link function, and i jµ α β+ +  as linear predictor.  

 

3.3 Asset Classes 

In this paper the asset classes are restricted to a short-term fixed interest 

security represented by 90-day bank bills, long-term fixed interest security 

represented by 10 year Australian government bonds, and equity 

represented by the Australian All Ordinaries Index.  For simplicity, in the 

rest of the paper, the three asset classes will be referred to as cash, bond 

and equity, respectively. It is assumed that cashflows occur at the end of 

each quarter. Assets are sold at the end of each quarter to pay off the claims 

that arise during the quarter. After the sale of assets, the weighting of each 

asset class is assumed to remain the same through the whole ten years. 

Transaction costs and taxes are ignored in this paper for simplicity.  

 

3.3.1 Stochastic Asset  Models 

The stochastic asset models examined include Random Walk model, Carter’s 

model, Vector AR(1) model and Harris’ Regime Switching Vector AR(1) model. 

The details of the models are included in the Appendix. For further details, 

readers may consult the relevant papers included in our reference section. 

 

3.3.2 Return of asset classes 

Cash 

Since 90-day bank bills are held until redemption date, the return of this 

short-term security for any quarter t will equal the short-term yields at time 

t-1 predicted by the stochastic asset model. 

 

Bond 

10-year government bonds are assumed to be held until redemption except 

for those which are sold at the end of each quarter in order to meet claims. 

The return of bonds equals   

t t-1 t

t-1

P -P +C
 

P   where Pt represents the price of 

bonds at time t and Ct the coupon payment during the tth quarter. The half-

yearly coupon rate is assumed to be 6% p.a. Since the JC model models the 

yield of long-term bonds instead of the price of the bond, bond price is 
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calculated based on the yield predicted by the model. Note that the term to 

maturity of bonds decreases over time. For example, suppose that at the 

beginning we add 10-year bonds into our asset portfolio, after one quarter 

the term-to-maturity of these bonds will be 9.75 years. However the JC 

model only models yield for the short-term security (90 days) and the long-

term bond (10-year government bond). In this paper simple linear 

interpolation is used to obtain the yield corresponding to the term-to-

maturity at the end of each quarter. For instance, at the end of the 4th 

quarter, the term-to-maturity for bonds will reduce to 9 years and suppose 

that the asset model predicts the short-term yield and long-term yields to be 

n4 and l4, then the yield used to price the bonds at the end of 4th quarter will 

equal  
4 4

4

l - n  
n + (9-0.25)

10-0.25
×

. 

 

Equity  

The return of equity will equal the sum of the price yields and dividend yields 

predicted by the asset model. 

 

3.3.3 Parameter Estimation 

The data required for estimation of the parameters of various models and 

how they are measured are summarised in tables which are included in 

Appendix. The data used for estimation are the quarterly data series starting 

from the first quarter of 1981 to the last quarter of 2000.  

 

3.4 Simulation Approach 

Since both the asset and liability models adopted in this paper are 

stochastic, it is intractable to analytically derive the distribution of ultimate 

surplus for a given asset portfolio. For this reason, a Monte Carlo simulation 

method is used to approximate the likely distribution of ultimate surplus. 

While a very wide range of portfolios could be tested in practice, for this 

worked example, we considered only four. The four are 100% cash, 100% 

bonds, 100% equities and balanced – 33% cash, 33% bonds, 40% equities. 

 

Apart from future asset returns and future claim payments, the value of the 

ultimate surplus depends on the value of the initial total asset amount. 
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The distribution of the ultimate surplus for a portfolio with a given initial 

asset amount is estimated from the results of 10000 simulations. The 

probability of a negative ultimate surplus is determined from the number of 

negative results from the 10,000 simulation results. No account is taken of 

the size of the negative amounts. All insolvencies are assumed to be “fatal”.  

 

4. Results 

 

4.1 Comparison of ‘Closest Asset Match’ with those derived by using 

different asset models 

 

The  graphs 4.1.1 to 4.1.4 show the relationship between probability of 

insolvency and initial asset value for the four portfolios examined, if different 

asset models are used. 

 

Table 4.1 also summarises the “Closest Asset Match” if we use different 

stochastic asset models and the corresponding approximate lowest initial 

asset amount required to ensure the probability of insolvency is below 5%.  

Table 4.1 

Asset Models Closet Asset Match Approximate Initial 
Asset Required for  less 
than 5% probability of 
insolvency 

RW All Cash 82000 
JC All Cash 87500 
VAR Balanced  94500 
RSVAR All Cash 90500 
 

The VAR model suggests that the “closest asset match” among the four 

portfolios examined be the balanced portfolio. This suggests that by 

increasing the weight of more volatile assets to boost the return of the asset 

portfolio may decrease the probability of insolvency. 

 

RW, JC mode and RSVAR model all suggest that the “closest asset match” be 

the all cash portfolio. This is due to the fact the JC model uses a random 

walk with a drift to model shares and as a result the suggested variance of 

share price return is large and this makes equity unattractive. 
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And among the four models, RW model suggests the lowest initial asset 

value needed to ensure the probability of insolvency below 5%, and VAR 

suggests the largest number. 
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Gragh 4.1.1 
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Graph 4.1.3 
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Graph 4.1.4 
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4.2 Comparison of different asset models using in-sample and 

out-sample data 

In this section, RW, JC, VAR(1) and RSVAR(1) models are compared. The 

comparison is based on the explanatory power of the one-step-ahead 

forecasts produced by each model. Five variables, namely inflation rate, 

share price return, share dividend yield, yield of cash, yield of 10-year 

government bond are compared across asset models. All the variables are 

measured quarterly and they are all in the form of continuous compounding. 

Actual values of the five variables are regressed on the forecasts produced by 

each model. If a model perfectly forecasts the future, we should expect the 

intercept of the regression line to be 0 and the slope to be 1. R2 statistics of 

the regression also shows the proportion of the variance of actual values 

explained by the forecasts produced by models. Regression analysis is 

carried out for two periods of data, in-sample data and out-of-sample data. 

The in-sample data covers the period from the first quarter of 1981 and the 

first quarter of 2000. The out-of-sample data covers the period form the 

second quarter of 2000 to the first quarter of 2004.  Table 4.2.11 

summarises the regression results for the in-sample data and Table 4.3.1 

summarises the regression results for the out-of-sample data.  

 

Table 4.2.1 

Variable   RW 
Standard 

Error JC 
Standard 

Error VAR(1) 
Standard 

Error RSVAR(1) 
Standard 

Error 

Intercept 0.0048 0.0013 0.0016 0.0014 0.0000 0.0012 0.0009 0.0012 

Slope 0.5891 0.0849 0.8229 0.0891 0.9963 0.0850 0.9556 0.0809 Inflation 
Rate R2 0.3461   0.5355   0.6441   0.6474   

Intercept 0.0196 0.0117 0.0196 0.0117 -0.0001 0.0166 -0.0033 0.0135 

Slope 0.0000 0.0000 0.0000 0.0000 1.0021 0.6082 1.1432 0.3804 
Share 
Price 

Return R2 0.0000   0.0000   0.0345   0.1062   

Intercept 0.0137 0.0011 0.0006 0.0015 -0.0012 0.0025 -0.0007 0.0019 

Slope -0.3028 0.1000 0.9501 0.1371 1.1534 0.2390 1.1216 0.1803 
Share 

Dividend 
Yield R2 0.0916   0.4036   0.2346   0.3374   

Intercept 0.0009 0.0009 0.0013 0.9403 0.0003 0.0011 -0.0008 0.0011 

Slope 0.9568 0.0318 0.9403 0.0347 0.9966 0.0373 1.0268 0.0390 
Yield of 
Cash R2 0.9086   0.9120   0.9036   0.9014   

Intercept 0.0002 0.0006 0.0002 0.0006 0.0001 0.0074 -0.0003 0.0008 

Slope 0.9873 0.0211 0.9854 0.0224 0.9969 0.0267 1.0101 0.0275 
Yield of 
Bond R2 0.9610   0.9645   0.9483   0.9468   

 

                                               
1 Significant Estimates are bolded 
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Table 4.2.2 

Variable   RW 
Standard 

Error JC 
Standard 

Error VAR(1) 
Standard 

Error RSVAR(1) 
Standard 

Error 

Intercept 0.0105 0.0033 0.0133 0.0059 0.0064 0.0035 0.0068 0.0038 

Slope -0.1954 0.2744 -0.5011 0.6129 0.4836 0.5603 0.4313 0.6770 Inflation 
Rate R2 0.0375   0.0489   0.0542   0.0303   

Intercept 0.0025 0.0150 0.0025 0.0150 -0.0486 0.0285 0.0288 0.0295 

Slope 0.0000 0.0000 0.0000 0.0000 2.0346 1.0000 -0.6812 0.6592 
Share 
Price 

Return R2 0.0000   0.0000   0.2415   0.0759   

Intercept 0.0113 0.0023 0.0037 0.0040 -0.0012 0.0025 0.0088 0.0028 

Slope -0.2360 0.2465 0.5763 0.4232 1.1534 0.2390 0.0262 0.2726 
Share 

Dividend 
Yield R2 0.0658   0.1249   0.2346   0.0007   

Intercept 0.0031 0.0022 0.0088 0.0015 0.0043 0.0021 0.0037 0.0022 

Slope 0.7505 0.1695 0.3030 0.1134 0.6442 0.1588 0.6452 0.1590 Yield of 
Cash R2 0.6013   0.3545   0.5585   0.5588   

Intercept 0.0067 0.5171 0.0117 0.0054 0.0072 0.00306 0.0064 0.0032 

Slope 0.9873 0.2144 0.5818 0.1899 0.4757 0.2124 0.5274 0.2219 Yield of 
Bond R2 0.0314   0.4192   0.2785   0.3029   

 

The regression with the in-sample data shows that the explanatory power of 

the one-step-ahead predictions of the models varies from one variable to 

another. The result shows that models’ one-step-ahead predictions have 

large explanatory power for yield of cash and yield of bond. None of the 

models examined has large explanatory power for share price return. Among 

the four models RSVAR has the largest explanatory power for equity price 

return with R2= 10.62%, and RW has the least explanatory power with R2=0.  

 

Overall the regression with in-sample data suggests that RSVAR fits the data 

best. And this is expected as RSVAR has more parameters than the other 

three models. 

 

The regressions with the out-of-sample data shows the explanatory power of 

the models’ one-step-ahead predictions decreases across all five variables 

except for the VAR(1) model, where R2 increases from 3.45% to 24%.  And 

some of the slopes are no longer significantly different from zero. 

 

The regression analysis shows that the best fitted model which is RSVAR(1) 

model may not be the winning model for out-of-sample data. This indicates 

the importance of judgement when calibrating the parameters. In Australia, 

there was a major regime shift in the last two decades. In the 1980s we had 



 16 

high inflation and high interest rate and now we have a regime of low 

inflation and low interest. Any model which assumes this trend will continue 

infinitely in the future might be proved to be wrong. But a model with 

parameters estimated based purely on statistical inference from past data 

will inevitably suggest so. 

 

4.3 Comparison of resulting asset portfolios by using different 

approaches 

We assume the initial asset value we have is 95000 and we use VAR(1) as 

our stochastic asset model. Table 4.3 summarises the probability of 

insolvency, mean ultimate surplus, median ultimate surplus and mean 

squared ultimate surplus, and mean shortfall as defined by Hürlimann 

(2002), for each portfolio considered. 

 

Table 4.3 

Portfolios 
Probability of 

Insolvency 

Mean 
Ultimate 
Surplus 

Median 
Ultimate 
Surplus 

Mean 
Squared 
Ultimate 
Surplus 
(closest 
billion) 

Mean 
Shortfall 

All Cash 6.03% 7030 10306 47 -3903 
All Bond 6.25% 10369 14821 51 -4156 
All Equity 14.41% 87358 65568 190 -10135 
Balanced 4.20% 27586 30466 79 -5036 

 

The closest match according to our definition which can be interpreted as 

that which results in the lowest probability will be the Balanced portfolio. 

And the closest asset match suggested by Wise (1984), which minimizes the 

mean squared ultimate surplus, will be the All Cash portfolio. If our objective 

is to minimize expected shortfall, again the All cash portfolio will be the 

closest asset match among the four portfolio. 

 

In our opinion the approach suggested by Wise may not be appropriate since 

under this approach a portfolio which results in a large positive mean 

surplus will be regarded as undesirable. The mean shortfall reported in the 

table might have overestimated the mean shortfall which can be realized in 

real life since some corrective actions such as, put the insurer in 

administration when it is deemed insolvent, which might prevent the 
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situation getting worse. If we take these corrective actions into account, we 

should expect the difference of mean shortfalls among the portfolios to be 

smaller. 

 

The difference between the mean and median suggests that the distributions 

of ultimate surplus are quite skewed. 

 

Conclusion and Further Research 

In this paper, we use different stochastic asset models to identify a “closest” 

asset match, as defined by Service and Sun (2003), for an assumed portfolio 

of liability, i.e. the asset portfolio, for a given probability of insolvency, which 

requires the lowest initial asset amount. It is found that different asset 

models lead to different “closest” asset match portfolios. This result suggests 

the importance of selecting the “right” stochastic asset model when 

identifying the “closest” asset match.  

 

Actual data is regressed on the one-period-ahead forecasts produced by 

different asset models for both in-sample data, from first quarter of 1981 to 

the first quarter of 2000, and out-sample data from second quarter of 2000 

and first quarter of 2004. It was found that RSVAR(1) best fits the in-sample 

data, but fails to be the winner for the out-of-sample data.  

 

Finally we find that asset mix derived based on Service and Sun’s definition 

is different from those based on other criteria. 
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Appendix 1 Stochastic Asset Models 

 

Random Walk Models 

 

Inflation 

  qt = qt-1+ qεt 

 

and  Qt = Qt-1 * exp(qt) 

Where dqt = change in force of inflation over quarter t, happening 

immediately at the start of quarter t,  

qt = force of inflation per quarter applying over quarter t, from time t-1 to t 

Qt = CPI index at end of quarter t 

And, qεt=i.i.d.N(0, qs2) 

 

 

The model for short-term yield 

dnt = B(nω1- nω2B)dqt + (1- nθ3B4)* nεt 

nt = nt-1 + dnt 

Nt= (exp(n t) –1)*400 

 

Where,  dnt = change in force of treasury yields over quarter t, happening 

                       immediately at the start of quarter t, namely time t-1 

               nt = force of treasury yields per quarter applying over quarter t 

Nt = Treasury yield over quarter t as % per annum 

and,       nωt=i.i.d.N(0,ns2) 

 

The model for long-term yield is 

Lt = Lt-1+ lεt 

Lt = ten year bond yield over quarter t as a nominal per annum rate 

convertible half yearly 

and 1εt=iid N(0, ls2),  

 

 

Share Price 
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ρt = ρΦ0 + ρεt 

Pt = Pt-1 * exp(ρt) 

where, 

ρt = force of share price yields over quarter t, time t-1 to t  

Pt = SPI at end of quarter t, time t 

and, ρεt = i.i.d.N(0, ρs2),  

 

 

The model for share dividends yield 

Yt = Yt-1+ yεt 

 

Where Yt= share dividend yield as nominal p.a. convertible quarterly 

and, yεt=i.i.d.N(0, ys2). 

 In addition, it is assumed are correlated and the correlation between them 

are assumed to be constant for the whole time period examined. 

 

Statistically it is inevitable that the random walk model will produce some 

negative values for all the variables, this becomes more likely as the variance 

increases when the time horizon increases.  Negative inflation rates and 

share price returns are economically acceptable; however with share 

dividend yield, cash yield and bond yield, negative values are unreasonable, 

therefore a minimum value of 0.5%  p.a. is applied to these three variables. 

 

JC Model  

 

The model for inflation is 

dqt = qΦ3dqt-1 +(1- qθ1B -  qθ2B2) * qεt 

and,  qt = qt-1 +dqt 

and  Qt = Qt-1 * exp(qt) 

Where dqt = change in force of inflation over quarter t, happening 

immediately at the start of quarter t,  

qt = force of inflation per quarter applying over quarter t, from time t-1 to t 

Qt = CPI index at end of quarter t 

And, qεt=i.i.d.N(0, qs2) 
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The model for short-term yield 

dnt = B(nω1- nω2B)dqt + (1- nθ3B4)* nεt 

nt = nt-1 + dnt 

Nt= (exp(n t) –1)*400 

 

Where,  dnt = change in force of treasury yields over quarter t, happening 

                       immediately at the start of quarter t, namely time t-1 

               nt = force of treasury yields per quarter applying over quarter t 

Nt = Treasury yield over quarter t as % per annum 

and,       nωt=i.i.d.N(0,ns2) 

 

The model for long-term yield is 

dlt = lω1dnt + lεt 

lt = lt-1 + dlt 

Lt = [exp(2lt) – 1] * 200 

and, dlt= change in force of bond yields over quarter t, happening 

immediately at start of quarter t, namely time t-1 

lt = force of bond yields over quarter t, from time t-1 to t 

Lt = ten year bond yield over quarter t as a nominal per annum rate 

convertible half yearly 

and 1εt=iid N(0, ls2),  

 

 

The model for share price  

ρt = ρΦ0 + ρεt 

Pt = Pt-1 * exp(ρt) 

where, 

ρt = force of share price yields over quarter t, time t-1 to t  

Pt = SPI at end of quarter t, time t 

and, ρεt = i.i.d.N(0, ρs2),  

 

The model for share dividends yield and inflation 

yt= yΦ3*yt-4 +yΦ0* (1-yΦ3)  + yω1qt-1 + yω1 yΦ3 qt-5 + yε t+ yθ2  yεt-1 

Yt = [exp(yt) – 1] *400 
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Where yt = force of share dividend yields over quarter t, time t-1 to t 

 Yt= share dividend yield as nominal p.a. convertible quarterly 

and, yεt=i.i.d.N(0, ys2) 

 

VAR(1) Model 

 

Xt = M +AXt-1+ ξt 

Xt = (Gt, Qt, ρt , lnYt, lnNt, lnLt)T is a 6*1 column vector of series values at 

time t. 

Where Gt is real Gross Nation Income(GNI) growth, 

 Qt is price inflation measured by CPI 

 ρt  is share price index returns 

 lnYt is the logarithm of annual share dividend yields convertiable 

quarterly 

 lnNt is logarithm short-term interest yields 

 lnLt is logarithm of the yield of ten year government bond. 

 

M is a 6*1 column vector of constants 

ξt is a 6*1 column vector of independent Normal random errors or shocks to 

the series at time t. They are not assumed to be contemporaneously 

correlated. 

 

A is a 6*6 parameter matrix. 

 

RSVAR(1) Model 

Xt =M(ρt) + A(ρt)Xt-1 + ξ(ρt)zt 

Zt~ i.i.d.N(0,1) 

Where ρt is defined to be a discrete-valued indicator variable, which indicates 

the regime that the financial market is in at time t, ρt belongs to {1,2}. The 

transition between regimes is governed by the transition probabilities, 

pij=p(ρt=j|ρt-1=i), with p11 + p12=1 and p21+p22=1. The model is therefore a 1st 

order discrete Markov process.  

Xt = (Gt, Qt, ρt , lnYt, lnNt, lnLt)T is a 6*1 column vector of series values at 

time t. 



 23 

Where Gt is Real Gross Nation Income(GNI) growth, 

 Qt is price inflation measured by CPI 

 ρt  is share price index returns 

 lnYt is the logarithm of annual share dividend yields convertiable 

quarterly 

 lnNt is logarithm short-term interest yields 

 lnLt is logarithm of the yield of ten year government bond. 

M(ρt) is a 6*1 column vector of constants for regime ρt. 

ξ(ρt) is a 6*1 column vector of the conditional standard deviations of 

the variables for regime ρt. 

 

A(ρt) is a 6*6 parameter matrix for regime ρt. 


