28 November – 1 December 2004

Xth Accident Compensation Seminar

PriceWATerhouseCoopers 🛛

28 November – 1 December 2004

Xth Accident Compensation Seminar

Soft-Computing in Accident Compensation

Peter Mulquiney Taylor Fry Consulting Actuaries

Institute of Actuaries of Australia

Outline

- Features of accident compensation data
- Overview of soft-computing methods
- Case study: CTP reserving

Accident Compensation Data

- Features of accident compensation data that make pricing and reserving difficult
 - Changes in the rate of claim finalisation
 - Legislative changes
 - Seasonality
 - Superimposed inflation varying by
 - Experience year
 - Age of claims
- Can be dealt with using GLMs

Example Data

- Data relates to CTP insurance from one state
- Claim file of 60,000 claims from 1994 2003
- Features of data illustrated by a GLM model of average size of finalised claim
- Model was developed for pricing and reserving

GLM Model

Model of average size of finalised claims

 $E[Y_r] = \exp \{a + \beta_1^d t_r + \beta_2^d \max(0, 10 - t_r) + \beta_3^d \max(0, t_r - 80) + \beta_4^d I(t_r < 8)$ [Operational time effect]

+ β^{s} I(k_r=March quarter) [Seasonal effect]

 $+ \beta_{1}^{f} k_{r} + \beta_{2}^{f} \max(0, k_{r} - 2000Q3)$ + $\beta_{3}^{f} I(k_{r} < 97Q1)$ [*Finalisation quarter effect*]

+ $k_r [\beta_1^{tf_1} t_r + \beta_2^{tf_2} max(0,10-t_r)]$ [Operational time x finalisation quarter interaction]

+ $\max(0,35-t_r) [\beta^{ta}_1 + \beta^{ta}_2 I(i_r > 2000Q3)] \}$ [Operational time x accident quarter interaction]

GLM Model

• Plot of log(average claim size) without seasonality

GLM vs Soft-Computing

- Building a GLM model takes time
- Specifying form of model can be difficult

 Interaction terms can be troublesome
- Quality of model will depend on skill of model builder
- Question: Are there better ways?

Soft-Computing

- Collection of methods
 - Designed specifically for large and/or complicated data sets
 - Largely automated
- Uses
 - Data mining
 - Modelling complex "non-linear" features
- Examples
 - Neural Networks, MART, MARS

Case Study – CTP Data

- Aim: Compare models of the average size of finalised claims
 - -GLMs
 - Neural Networks
 - -MARS
 - -MART

Soft-Computing Background

- GLMs
 - Manually build model that matches the data
- Neural Networks
 - Model is so flexible that it can model almost anything
 - Various techniques used to protect against overfitting
- MART and MARS
 - Regression functions built automatically by progressively adding more terms
 - Each term constructed out of simple functions

Results: one-way tables

• Finalised claims against accident quarter

Results: one-way tables

• Finalised claim against development quarter

Triangles of observed to fitted ratios

Triangles of observed to fitted ratios

"3D Triangles"

• Log(average size of finalised claims)

"3D Triangles"

• Log(average size of finalised claims)

Predictive accuracy

- Each model fitted to "training set" consisting of 2/3 of total data
- Remaining 1/3 of data used as "test set" to test the predictive accuracy

Model	Sum of squares	Average Absolute Error
GLM	2.000×10^{14}	33,777
Neural Network	1.996 x 10 ¹⁴	33,476
MART	1.999 x 10 ¹⁴	33,290
MARS	$1.994 \ge 10^{14}$	33,806

Projections of claim size

Summary

- Neural Networks and MART had better predictive accuracy than GLMs
- The soft-computing methods were largely automated and quicker to use
- Soft-computing models were less suitable for projecting claim sizes into future periods

Summary

- GLMs better for performing pricing and reserving projections
- Soft-computing techniques could play role in model checking
 - Assessing the prediction error of the GLM model
 - Help determine which interactions to include in the GLM model.

Summary

• Features remaining in the residuals from a "main effects" GLM model of claim size

Thank you