Xth Accident Compensation Seminar

Soft-Computing in Accident Compensation

Peter Mulquiney

Taylor Fry Consulting Actuaries

Institute of Actuaries of Australia

Outline

- Features of accident compensation data
- Overview of soft-computing methods
- Case study: CTP reserving

Accident Compensation Data

- Features of accident compensation data that make pricing and reserving difficult
- Changes in the rate of claim finalisation
- Legislative changes
- Seasonality
- Superimposed inflation varying by
- Experience year
- Age of claims
- Can be dealt with using GLMs

Example Data

- Data relates to CTP insurance from one state
- Claim file of 60,000 claims from 1994 - 2003
- Features of data illustrated by a GLM model of average size of finalised claim
- Model was developed for pricing and reserving

GLM Model

- Model of average size of finalised claims

$$
\begin{aligned}
& E\left[Y_{r}\right]=\exp \left\{a+\beta^{d}{ }_{1} t_{r}+\beta^{\mathrm{d}}{ }_{2} \max \left(0,10-\mathrm{t}_{\mathrm{r}}\right)\right. \\
& +\beta^{\mathrm{d}}{ }_{3} \max \left(0, \mathrm{t}_{\mathrm{r}}-80\right)+\beta^{\mathrm{d}}{ }_{4} \mathrm{I}\left(\mathrm{t}_{\mathrm{r}}<8\right) \\
& \text { [Operational time effect] } \\
& +\beta^{s} \mathrm{I}\left(\mathrm{k}_{\mathrm{r}}=\text { March quarter }\right) \\
& +\beta_{1}{ }_{1} \mathrm{k}_{\mathrm{r}}+\Omega^{\mathrm{f}}{ }_{2} \max \left(0, \mathrm{k}_{\mathrm{r}}-2000 \mathrm{Q} 3\right) \\
& +\beta^{\mathrm{f}}{ }_{3} \mathrm{I}\left(\mathrm{k}_{\mathrm{r}}<97 \mathrm{Q} 1\right) \\
& \text { [Finalisation quarter effect] } \\
& +\mathrm{k}_{\mathrm{r}}\left[\mathrm{~S}^{\mathrm{tf}}{ }_{1} \mathrm{t}_{\mathrm{r}}+\beta^{\mathrm{tf}}{ }_{2} \max \left(0,10-\mathrm{t}_{\mathrm{r}}\right)\right] \text { [Operational time } \mathbf{x} \text { finalisation } \\
& \text { quarter interaction] } \\
& \left.+\max \left(0,35-\mathrm{t}_{\mathrm{r}}\right)\left[\mathrm{S}^{\mathrm{ta}}{ }_{1}+\mathrm{S}^{\mathrm{ta}}{ }_{2} \mathrm{I}\left(\mathrm{i}_{\mathrm{r}}>2000 \mathrm{Q} 3\right)\right]\right\} \\
& \text { [Operational } \\
& \text { time } \mathrm{x} \text { accident quarter interaction] }
\end{aligned}
$$

GLM Model

- Plot of log(average claim size) without seasonality

GLM vs Soft-Computing

- Building a GLM model takes time
- Specifying form of model can be difficult
- Interaction terms can be troublesome
- Quality of model will depend on skill of model builder
- Question: Are there better ways?

Soft-Computing

- Collection of methods
- Designed specifically for large and/or complicated data sets
- Largely automated
- Uses
- Data mining
- Modelling complex "non-linear" features
- Examples
- Neural Networks, MART, MARS

Case Study - CTP Data

- Aim: Compare models of the average size of finalised claims
- GLMs
- Neural Networks
- MARS
- MART

Soft-Computing Background

- GLMs
- Manually build model that matches the data
- Neural Networks
- Model is so flexible that it can model almost anything
- Various techniques used to protect against overfitting
- MART and MARS
- Regression functions built automatically by progressively adding more terms
- Each term constructed out of simple functions

Results: one-way tables

- Finalised claims against accident quarter

Results: one-way tables

- Finalised claim against development quarter

Triangles of observed to fitted ratios

Triangles of observed to fitted ratios

"3D Triangles"

- Log(average size of finalised claims)

GLM

NN

"3D Triangles"

- Log(average size of finalised claims)

GLM

MART

Predictive accuracy

- Each model fitted to "training set" consisting of 2/3 of total data
- Remaining $1 / 3$ of data used as "test set" to test the predictive accuracy

Model	Sum of squares	Average Absolute Error
GLM	2.000×10^{14}	33,777
Neural Network	1.996×10^{14}	33,476
MART	1.999×10^{14}	33,290
MARS	1.994×10^{14}	33,806

Projections of claim size

GLM

MART

NN

MARS

Summary

- Neural Networks and MART had better predictive accuracy than GLMs
- The soft-computing methods were largely automated and quicker to use
- Soft-computing models were less suitable for projecting claim sizes into future periods

Summary

- GLMs better for performing pricing and reserving projections
- Soft-computing techniques could play role in model checking
- Assessing the prediction error of the GLM model
- Help determine which interactions to include in the GLM model.

Summary

- Features remaining in the residuals from a "main effects" GLM model of claim size

Thank you

