CAPITAL RESERVING FOR CREDIT RISK

FOR

INSURERS (LIFE & GI) AND OTHER INSTITUTIONS

Greg Martin & Martin Paino

IAAust BIENNIAL CONVENTION 2003

Agenda

- Introduction
- Brief overview of methods & our model
- Summary of some indicative results
- Observations and Comments
- Discussion (your part)

Introduction

Large multifaceted subject

Is increasingly impacting on actuaries

Focus of paper on reserving for credit risk

- Why interest in credit reserving?
- Life Insurers:
 - Required to reserve for asset liability mismatch risk. Rules (RR) reflect crude risks.
 - Recently, many LIs reducing crude risk
 - Moving from high grade to lower grade debt
 - New Solv and CapAd Standards require the actuary to consider reserving for credit risk

- Equal application to:
 - General Insurance
 - Health
- Super
 - Issues UFP & IAS19
 - Increasing focus on A/L mismatch likely
 - Credit risk likely to rise in importance
- Other Financial Institutions
 - Credit risk often important to new complex products but analysis methods lagging

- Credit Risk Elements
 - Credit risk is a subset of broader subject of asset/liability mismatch risk.
 - For a matched A/L portfolio, initial impression: actual default only risk
 - BUT must consider technical solvency:
 - LIASB Solvency and GPS110 liabilities discounted at sovereign debt rates
 - LIASB CapAd disconnect between asset and liability discount rates

- Technical credit reserving elements:
 - The impact of potential actual defaults
 - The impact of credit rating migration
 - The impact of adverse market credit spread movements (⇔ liability discount rates).

 However, legitimate to reduced reserve to the extent the liability discount rates < expected earnings on the assets.

Basel

Basel II

Internal bank models

- Basel I
 - Risk weighting approach
 - Must hold 8% of risk-weighted assets
 - Weighting dependent on counterparty type
 - 0% OECD Government Bonds
 - 100% Corporate Bonds irrespective of rating
- Very blunt method (over/under reserve):
 - Ignore corporate debt rating, duration effects
 - Unclear how addresses reserve elements

Basel II

- Three approaches available:
 - -"Standardised Approach"
 - -"Foundation Internal Rating Approach"
 - -"Advanced Internal Ratings Approach"

- Standardised Approach:
 - Similar to Basel I, except:
 - Risk weightings based on credit rating of issuer
 - Risk weighting for corporate bonds are:

```
Credit
                 AAA to
                            A + to
                                     BBB+to
                                                 Below
                                                           Unrated
Assessment
                   A A -
                              A -
                                        BB-
                                                  BB-
(S&P Scale)
Risk Weighting
                   20%
                             50%
                                       100%
                                                 150%
                                                            100%
```

Still a blunt method. Ignores duration.
 Unclear how all risk elements addressed.

- Foundation Internal Approach:
 - Greater granularity of the risk weights

- Advanced Internal Approach:
 - As above, plus the time to maturity
- Better, but still relatively blunt. Market spread vol? Diversification level? etc

- Internal bank models
 - Use credit risk models
- Two general types of models:
 - Based on the default mode (DM) paradigm
 a credit loss only occurs when a borrower defaults.
 - Based on the mark-to-market (MTM)
 paradigm a credit loss also from a
 reduction in market value from credit
 rating downgrade.
- Still limitations. E.g. market spread vol.

Two Models Outlined

- Two actuarial models outlined
- An "Adjusted Default Based" Model (the ADB model):
 - Based on DM paradigm
 - "Deterministic"
- An "Adjusted MTM Transition" Model (the AMTMT model):
 - Based on MTM paradigm
 - "Stochastic"

ADB Model

- Four calculation components
 - A default risk reserving model (that deals with the risk of actual default experience);
 - An approximate migration reserving model;
 - An approximate credit spread reserving model; and
 - An out-performance reserving reduction estimate.

ADB model (Cont.)

- Default risk is calculated using the mean/standard deviation approach
 - Similar to calculating the value at risk of an equity portfolio
 - Based on probabilities of default
 - Allows for correlation
 - Allows for loss (severity) variation
 - Analytical (deterministic) approach

ADM model (Cont.)

- Credit Migration Reserve
 - Migration probabilities
 - Correlation ignored
 - "Continuous" assumption (offset above)
- Credit Spread Reserve
 - Simply spread volatility (100% correl)
- Outperformance Offset
 - Spread earned during period, plus
 - Value gain from spreads narrowing

AMTMT model

- Stochastic model
- Based on JP CreditMetrics Model
- But we added in credit spread vol
- Two calculation components
 - Credit risk model that reserves for default, migration, and credit spread
 - An outperformance offset

AMTMT model – Single Bond

Distribution of Bond Value at year end

Value at beginning of year	100.00
Nominal value at end of year	100.14

Rating Year End	Probability (%)	Value (\$)
AAA	0.04	102.67
AA	0.25	102.06
A+	0.37	101.41
Α	0.98	101.34
Α-	3.17	101.15
BBB	89.12	100.14
ВВ	4.70	84.48
В	0.81	78.99
CCC	0.27	69.27
Default	0.30	50.00
Expected Value at Year E	nd	99.05
Nominal Spread Margin		1.10
Spread Narrowing Gain		0.14
Expect Default Loss		-0.15
Expect Migration Loss		-0.94
Expect Profit		0.15

AMTMT model – Portfolio

- Allow for correlation between defaults and migrations.
- Correlation based on an underlying "asset model", i.e. movements in credit rating are related to returns on assets underlying the security
- Also, high level correlation between overall migration outcome and market spreads

Indicative Results

- Example portfolio
- Liabilities: simple fixed rate, fixed term annuity portfolio
 - 5 year term
 - Return of capital
 - Value \$1.4 Billion

Assume flat CTB yield curve of 5%

Indicative Results

Bond Portfolio					
		Face Value		Term to	
Rating	No. of Holding	of Holding	Coupon Rate	Maturity	
AAA	7	20,000,000	5.4%	5 yrs	
AA	21	20,000,000	5.6%	5 yrs	
A+	7	20,000,000	5.7%	5 yrs	
Α	7	20,000,000	5.8%	5 yrs	
A-	7	20,000,000	5.8%	5 yrs	
BBB	7	20,000,000	6.1%	5 yrs	
ВВ	7	20,000,000	11.1%	5 yrs	
В	7	20,000,000	13.1%	5 yrs	
CCC	0	20,000,000	17.1%	5 yrs	
Total	70 1	1,400,000,000			
Rating of Portfolio (based on nominal credit rating)					
Rating of Portfolio (based on weighted average default rate)					

Indicative Results

Calculated Reserves for example portfolio

	95% CI 99% CI		CI	99.5% CI		99.9% CI		
	ADB	AMTMT	ADB	AMTMT	ADB	AMTMT	ADB	AMTMT
Default Risk	2.4%	2.3%	3.4%	3.9%	3.7%	4.5%	4.5%	5.6%
Migration	1.5%	0.6%	2.1%	1.3%	2.4%	1.4%	2.9%	1.9%
Spread	1.4%	1.6%	2.0%	2.1%	2.2%	2.3%	2.7%	2.7%
Credit Risk Reserve	5.3%	4.6%	7.5%	7.2%	8.4%	8.2%	10.0%	10.1%
Outperformance	-1.6%	-1.6%	-1.6%	-1.6%	-1.6%	-1.6%	-1.6%	-1.6%
Total Reserve	3.8%	3.0%	6.0%	5.7%	6.8%	6.6%	8.5%	8.5%

Calculated Reserves for example portfolio

Credit Risk Reserve

BASELI	8.0%
BASEL II (Standardised Approach)	3.8%
ADBM*	6.8%
AMTMT*	6.6%
*99.5% confidence interval	

Observations & Comments

- Credit reserves can be significant
- Relative small below "A" exposure can generate significant risk & reserves
- Duration can be important (impact of spreads)
- A deterministic model can produce reasonable results in appropriate circumstances

Observations & Comments

- A number of practical issues to consider:
- Need to allow for actual aggregate exposure:
 - Need to aggregate exposures
 - Should properly net (but make sure valid)
 - Difficulties with aggregate exposures that span different credit rankings
 - Need to consider derivative exposures
- In reality, should model A/L mismatch as a total
 - "Market risk" + "Credit risk" in one big DFA model
 - Correlation, diversification and optionality

Observations & Comments

- Individual large credit spread needs individual consideration.
- Low diversification also needs careful consideration (res < any one exp).
- Junk Bonds quasi equity
- Parameter variability
- Parameter accuracy / consistency
- Time Horizon and ruin probabilities

