"Errors and misconceptions"

Richard Fitzherbert

IAAust BIENNIAL CONVENTION 2003

The Real World Vs Stochastic Heaven

- Fitzh 2001 challenged empirical studies about β and portfolio investment returns
- Sherris and Wong (2003)
 - assume iid, lognormality etc
 - derive
 - ignore limitations of assumptions

What was said

Fitzherbert 2001 (from abstract):

"If the appropriate definition of mean return for **long-term investment or asset modelling** *is mean continuously compounded return or* **its equivalent**, *then much of the* **empirical support** *for a positive relationship between beta values and return may need to be re-evaluated."*

What S&W thought was said

"Fitzherbert claims that if the expected return used in empirical studies were the average continuously compounded return then the CAPM relationship between expected return and β would be questionable. We demonstrate that an arithmetic average of returns should be used to estimate the expected return in the standard CAPM and show that using a geometric average is incorrect."

What are the differences?

- Fitzherbert 2001
 - long term investment return
 - geometric mean determines actual outcome
 - empirical results have been misinterpreted for 30 years
- Sherris & Wong 2003
 - standard CAPM a single period model
 - <u>assuming independence</u>, arithmetic mean return determines expected outcome

In Stochastic Heaven

- Rates of return are iid
- $log{1 + r(i)} \sim N(\mu, \sigma^2)$
- $E[r(i)] = \exp{\{\mu + 0.5 \sigma^2\}} 1$
- $E[X(n) / X(0)] = \exp\{n \mu + 0.5 n \sigma^2\}$
- But $GMR(n) \rightarrow exp\{\mu\}$ -1 almost surely

Back in the Real World

- Numerous factors determine Earnings, dividends etc.
- Market participants determine valuation basis through P/E ratios, dividend yields etc
- plus 'noise'

RW dual process models

X(t) price index at time t
 V(t) earnings dividends or book value
 PV(t) Market valuation basis
 P/E, 1 / [div yield] or price/book

$X(t) = V(t) \times PV(t) \text{ so}$ $\log \{ X(t) \} = \log \{ E(t) \} + \log \{ PE(t) \} \text{ or}$ $\log \{ X(t) \} = \log \{ D(t) \} + \log \{ PD(t) \}$

Features of dual processes

log { X(t) } = log { V(t) } + log { PV(t) }
<u>Real world features</u>

volatility of X(t) dominated by vol of PV(t)

log { PV(t) } is stationary

Glassman and Hassett (1999) "Dow 36000"

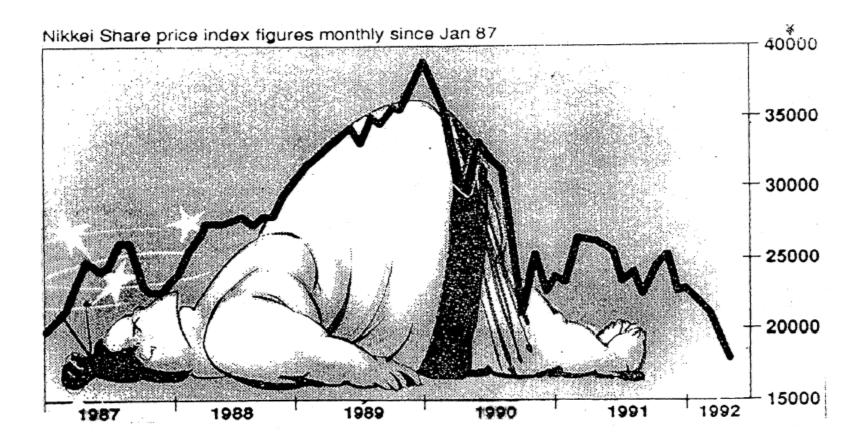
Nomura advert in 1989

Stock prices trend-revert (see MGWP)

Models which assume serial independence

overestimate long-term variance

Nikkei 225 Jan 87 – May 92



Features of dual processes

log { X(t) } = log { V(t) } + log { PV(t) }
<u>Real world features</u>

volatility of X(t) dominated by vol of PV(t)

log { PV(t) } is stationary

Glassman and Hassett (1999) "Dow 36000"

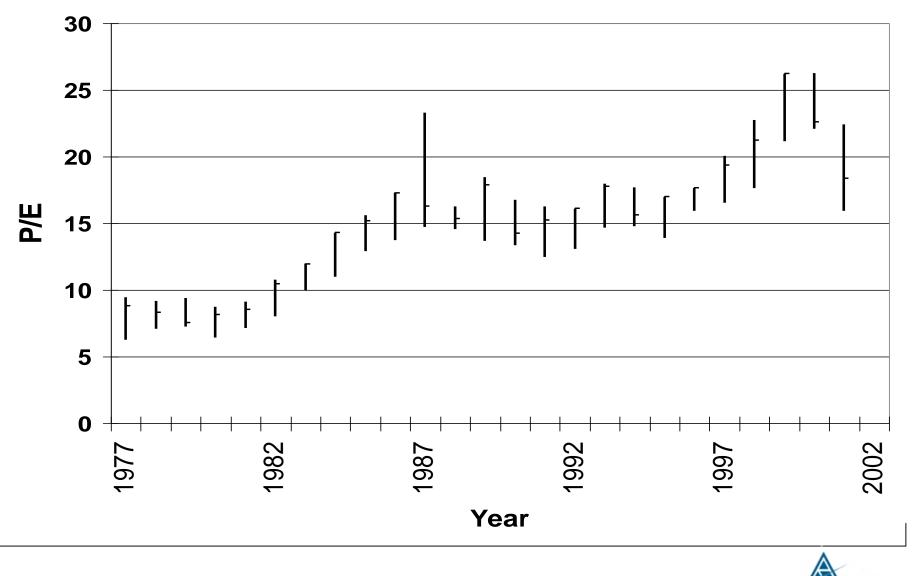
Nomura advert in 1989

Stock prices trend-revert (see MGWP)

Models which assume serial independence

overestimate long-term variance

UK P/ [adjusted average E]



Institute of Actuaries of Australia

Continuous compounding ???

- $\delta(i) = \log\{1 + r(i)\}$
 - where *r(i)* is return in period *i*
 - refer para 3.6
 - CCMR = mean of $\delta(i)$ [also = log (1 + gmr)]
- $\cdot \quad E[A \times B] \neq E[A] \times E[B]$
 - unless A&B are independent
- but E[log {A x B}] = E[log {A}] + E[log{B}]

log-return Vs force of return ?

Non-SP versions of CAPM

- Sherris and Wong 'derive'
 - with what assumptions (Stochastic Heaven?)
 - Merton's continuous model 'tested' by Jensen (1972)
- What did Jensen say?

 see Fitzh (2001) para 3.9
 <u>"the [continuously compounded]</u> model does not fit the data"

The BJS (1972) study

- Fitzh (2001) commented
 - -BJS study was based on arithmetic means of monthly discrete rates of 'excess return'
 - -study period ran from bust to bubble
 - low β portfolios dominated by utilities
 - -widely misinterpreted as evidence of a link between β and long-term return

The low P/E effect

Sherris and Wong say

"higher risk portfolios will have lower P/E ratios [and therefore higher returns] regardless of how the risk is measured. The lower the median P/E the higher the expected return."

and according to Basu the lower the β

This argument contradicts EMH and CAPM!

What are the limits of IID?

- long-term stock prices <u>trend</u> revert
 refer MGWP report (and others)
- extreme valuation ratios tend to revert

 ask AMP and defined benefit scheme
 consultants

Trend reversion Vs IID

simple binomial model

r(i) = +30% prob 0.5 AMR= 10% = -10% prob 0.5 StdDev = 20%

If IID AMR $\Rightarrow E[X(10)/X(0)] = 1.1^{10} = 2.59$

Now let r(i+1) = 0.2 – r(i) r(i) has same distn but series is trend reverting and not indep

E[X(10)/X(0)] = 2.19 approx 2% less per unit

Are S&W conclusions justified?

- Use of arithmetic mean depends on IID
- Lognormal expectations rely on extreme values on right tail
- No justification of Stochastic Heaven is offered
- Effect of approximations are unquantified

