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Fair Value of Liabilities - How Do We Define “Closest” 
Asset Match? 

 
Abstract 
 
“Fair value” of liabilities is becoming an increasingly important 
concept for the accounts of insurance companies. The fair value of 
assets can, in most cases, be determined by taking the market value 
but there is no practical market value for insurance liabilities. This 
leads to various alternative approaches. While the theory is still under 
active discussion, all approaches use the concept of the asset portfolio 
which is the “closest match” to the liability portfolio. The discount rate 
implied by that asset portfolio is used as the discount rate for the 
liability cashflows to give a “fair value” of liabilities for the insurer’s 
balance sheet. 
 
In this paper we suggest an approach to find the asset portfolio with 
the “closest match” to a particular liability portfolio when both are 
comprised of stochastic cashflows. Since these portfolios are 
stochastic the approach results in “closest match” being measured on 
a probabilistic basis. 
 
Our definition of “closest match” is  
 

The asset portfolio which, for a given probability of ultimate 
surplus being negative, requires the lowest initial asset 
amount. 

 
This definition leads also to the conclusion that the “closest match” 
asset portfolio can be different for different probabilities of insolvency. 
 
A worked example using stochastic models for both asset and liability 
cashflows shows the “closest match” portfolios for various 
probabilities of insolvency. 
 
 
David Service      Jie Sun 
Centre for Actuarial Research    Centre for Actuarial Research 
Australian National University    Australian National University 
david.service@anu.edu.au    jie.sun@anu.edu.au 
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1. Introduction 
“Fair value” of liabilities is becoming an increasingly important 
concept for the accounts of insurance companies. The fair value of 
assets can, in most cases, be determined by taking the market value 
but there is no practical market value for insurance liabilities. This 
leads to various alternative approaches. While the theory is still under 
active discussion all approaches use the concept of the asset portfolio 
which is the “closest match” to the liability portfolio. The discount rate 
implied by that asset portfolio is used as the discount rate for the 
liability cashflows to give a “fair value” of liabilities for the insurer’s 
balance sheet. 
 
When a future insurance liability is known with certainty, (for 
example, it is known that exactly $4000 liability is due in 2 years’ 
time), the fair value will be very straightforward to determine, i.e. the 
value of 2-year zero coupon bond. However, few general insurance 
liabilities are known with certainty. In particular, for long tail 
business there are very large uncertainties surrounding the liability 
cashflows. Therefore, a perfect match usually does not exist for most 
general insurance liabilities and the idea of identifying the asset 
portfolio with the “closest match” forms an important component of 
determining the fair value of liabilities. 
 

This particular scenario is representative of a more general problem 
which is relevant not only to the fair value of liabilities but to the 
overall concept of asset / liability matching, i.e. how do we determine 
the asset portfolio with the closest match to a liability portfolio when 
both are comprised of stochastic cashflows. 
 
In this paper we suggest an approach to find the asset portfolio with 
the “closest match” to a particular liability portfolio when both are 
comprised of stochastic cashflows. Since these portfolios are 
stochastic the approach results in “closest match” being measured on 
a probabilistic basis. 
 

 

The paper is structured as follows – 
 
Introduction 
  This introduction 
2 Definition of “Closest Match” 
  The derivation of a definition of “closest match” 
3 A Worked Example 
 3.1 Liability Data 
  Description of the liabilities modelled 
 3.2 Stochastic liability model 
  The particular stochastic liability model used 
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 3.3 Stochastic model 
  The particular stochastic asset model used 
 3.4 Simulation Approach 
  The simulation method used 
4 Results 
  The results obtained 
5 Conclusion 

A summary of the conclusions reached and items for 
further research 

Appendix A 
  The claims run-off experience 
Appendix B 
  Details of the asset model 
 

2 Definition of “closest match”  
 
Wise (1984) defines a “positive match asset portfolio” to a given 
liability as the one which will minimise the mean square ultimate 
surplus. Ultimate surplus is measured in terms of the realisable 
market value of the assets remaining when all liabilities have been 
extinguished. The term ‘positive’ refers to the exclusion of negative 
holding of assets, namely borrowings. Wise also shows how a “positive 
match asset portfolio” can be obtained for a fixed liability known with 
certainty. 
 

Wilkie (1985) points out that the positive matching portfolio identified 
by Wise (1984) might not be an efficient portfolio, and even if it is 
efficient under some circumstances, it might not be the most optimal 
portfolio for a particular investor. 
 

Wilkie (1985) argues that rational investors must take account of the 
prices of securities in order to choose an optimal portfolio. Therefore, 
Wilkie considers feasible portfolios in the P-E-V 3-dimensional space, 
where P represents the aggregate price of all assets in the portfolio, E 
the expected ultimate surplus of assets net of liabilities on completion 
of the liability cash flows and V the variance of ultimate surplus. 
Wilkie has therefore generalized conventional portfolio theory by 
including the price P of the portfolio as a third dimension. In the 
conventional theory (described by, for example, Moore), only E and V 
are considered because, in the absence of fixed unmarketable 
liabilities, the proportions of assets to be held in the selected portfolio 
will be the same whatever the value of P. In order to identify the 
efficient portfolio, he assumes that investors are in favour of a high 
expected surplus, E, low variance of surplus, V, and a low immediate 
price, P. Wilkie also shows how the particular preferences of an 
investor can be expressed and used to select particular portfolios from 
the range of efficient portfolios. 
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In this paper, unlike Wise or Wilkie, the authors decided to make a 
stochastic assumption for liabilities which might more closely model 
the behaviour of general insurers’ liabilities.  
 
For most insurers or pension funds, it has long been argued that it 
may not be the most appropriate way to define risk by variance. For 
these financial institutions, the major risk concern is the failure to 
meet future liabilities, which is the insolvency risk.  
 
Overriding any considerations of theoretical asset / liability profiles 
insurers must ensure that they remain solvent at all times. As a result 
if the assets become less than the liabilities the “game” is over. Hence 
any definition of “closest match” must take into account the 
probability of insolvency. Insurer’s business strategies are always 
based around optimising profit while providing for an acceptably low 
probability of insolvency. 
 
For the purposes of this discussion insolvency is defined as an 
ultimate surplus of less than zero. Actual insolvency may have arisen 
at some earlier time but since we are only examining the position 
when the liability cashflows have ceased, insolvency is defined at that 
time. It is clear that, with asset and liability cashflows both being 
stochastic in nature, any finite initial amount of assets still results in 
a non-zero probability of insolvency. It is only with an infinite amount 
of assets and a finite amount of liabilities that the probability of 
insolvency is zero – hardly a likely real world scenario! 
 
It also follows that for any particular asset portfolio the higher the 
initial amount of assets the lower the probability of insolvency. In 
addition, for any given amount of initial assets the probability of 
insolvency for each possible asset portfolio will be different. These two 
propositions also lead to the observation that for a given probability of 
insolvency each possible asset portfolio will require a different initial 
amount of assets to ensure a probability of insolvency equal to that 
required. 
 
Since we have two variables – probability of insolvency and initial 
asset amount – and only one equation, typically no unique solution 
exists. In order to determine the “closest match” we must set one of 
those variables in order to reach a unique solution. Since insolvency is 
the ultimate determinant of an insurance company’s fate we 
determine that it is the probability of insolvency which must be set 
before the “closest match” asset portfolio can be decided. 
 
Our definition of “closest match” is therefore 
 

The asset portfolio which, for a given probability of ultimate 
surplus being negative, requires the lowest initial asset 
amount. 
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This definition leads also to the conclusion that the “closest match” 
asset portfolio can be different for different probabilities of insolvency. 
 
In our view, this definition applies quite generally to asset / liability 
matching not just to the context of fair values of liabilities. 
 
 
3 A Worked Example 
 
In order to illustrate the application of our definition of “closest 
match” we now show a worked example of the approach. A 
hypothetical portfolio of outstanding long tail claims is measured 
against various asset portfolios which are assumed to follow one of the 
well known stochastic asset models. The details of both the stochastic 
liability model and the asset model are described in the following 
sections.  
 

3.1 Liability Data 

In this paper, we suppose there exists a hypothetical portfolio of long 
tail outstanding claims which runs off in ten years’ time and where 
payments of claims are made at the end of each quarter. The 
hypothetical claims payment experience is shown in Appendix A with 
the row representing the accident quarter of the claim and the column 
the number of quarters the report or close of the claim is delayed. The 
data in the triangle includes both general and superimposed inflation. 
 
The claims cashflow model uses the stochastic chain-ladder method 
suggested by Renshaw and Verrall (1998) and cashflows are then 
further adjusted by both the general inflation and super-imposed 
inflation. General inflation is simulated stochastically by using the 
asset model and superimposed inflation is assumed to be 8% p.a. 
constantly. 
 
3.2 Stochastic liability model 
Renshaw and Verrall (1998) present a statistical model underlying the 
chain-ladder technique. They show that the estimates produced by 
chain-ladder method is equivalent to a generalised linear model (GLM) 
with a log link function relating to the mean of the responses and a 
Poisson distribution for error structure, i jµ α β+ +  as linear predictor.  
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Namely, 
 

ijY ~Poisson with mean mij, independently ∀  ,i j
where: 

log ij i jm µ α β= + +   

and  1 1 0α β= =  
 
Yij represents the increment claim amount reported with accident time 
index i and delay index j. 
 

Renshaw and Verrall (1998) also point out that it is easy to write down 
a quasi-likelihood, which allows for the variance relationship with the 
mean to be user specified rather than being fixed according to the 
distribution function of the error distribution. This will allow the 
model to be applied to negative incremental claims and the results are 
always the same as those by the chain-ladder technique when 

, where n is the maximum of delay index. They also point 
out the chain-ladder method will be more appropriate if the run-off 
triangle consists of claim numbers rather than claim amounts. In the 
light of this, instead of using Poisson distribution for errors, Gamma, 
log-normal or inverse-Gaussian distribution may be used for claim 
size. 

1

1
0n j

iji
Y− +

=
≥∑

 

In this paper, a gamma distribution is assumed for error distribution, 
log as the link function, and i jµ α β+ +  as linear predictor.  
 
3.3 Stochastic asset model 
 
In this paper the asset classes are restricted to a short-term interest 
security represented by 90-day bank bills, long-term interest security 
represented by 10 year Australian government bonds, and equity 
represented by the Australian All Ordinary Index.  For simplicity, in 
the rest of the paper, the three asset classes will be referred to as 
cash, bond and equity, respectively. It is assumed that cashflows 
occur at the end of each quarter. Assets are sold at the end of each 
quarter to pay off the claims that arise during the quarter. After the 
sale of assets, the weighting of each asset class is assumed to remain 
the same through the whole ten years. Transaction costs and taxes 
are ignored in this paper for simplicity.  
 

3.3.1 Australian Stochastic model 

In this worked example, Jon Carter’s Australian stochastic model 
(1991) is used to model the returns for each asset class. Jon Carter’s 
Model (JC model) can be viewed as a modification of the Wilkie model 
relevant to the Australian financial environment. The cascade 
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methodology, which was adopted in the Wilkie model was also applied 
in the JC Model. However the cascade in this model was expanded 
beyond the original Wilkie model (1986).  It is represented by Figure 
3.1. 
 
 

Figure 3.1 Cascade Structure of the JC Model 
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Full details of the asset model are set out in Carter’s original paper 
and, for ease of reference, are shown in Appendix B. 
  

3.3.2 Return of asset classes 

Cash 

Since 90-day bank bills are held until redemption date, the return of 
this short-term security for any quarter t will equal the short-term 
yields at time t-1 predicted by the stochastic asset model. 
 
Bond 
 
10-year government bonds are assumed to be held until redemption 
except for those which are sold at the end of each quarter in order to 

meet claims. The return of bonds equals   t t-1 t

t-1

P -P +C  
P

  where Pt 

represents the price of bonds at time t and Ct the coupon payment 
during the tth quarter. The half-yearly coupon rate is assumed to be 
6% p.a. Since the JC model models the yield of long-term bonds 

 8



instead of the price of the bond, bond price is calculated based on the 
yield predicted by the model. Note that the term to maturity of bonds 
decreases over time. For example, suppose that at the beginning we 
add 10-year bonds into our asset portfolio, after one quarter the term-
to-maturity of these bonds will be 9.75 years. However the JC model 
only models yield for the short-term security (90 days) and the long-
term bond (10- year government bond). In this paper simple linear 
interpolation is used to obtain the yield corresponding to the term-to-
maturity at the end of each quarter. For instance, at the end of the 4th 
quarter, the term-to-maturity for bonds will reduce to 9 years and 
suppose that the asset model predicts the short-term yield and long-
term yields to be n4 and l4, then the yield used to price the bonds at 

the end of 4th quarter will equal  4 4
4

l - n  n + (9-0.25)
10-0.25

× . 

 

Equity  

The return of equity will equal the sum of the price yields and 
dividend yields predicted by the asset model. 
 
3.3.3 Parameter estimation 
 
The data required for estimation of the parameters of JC model and 
how they are measured are summarised in table 3.1. The data used 
for estimation are the quarterly data series starting from the first 
quarter of 1980 to the last quarter of 2000.  
 

Table 3.1   Data required to estimate the parameters of JC Model 
 
Economic Variables Measurement 

Inflation Rate CPI 

Short-term fixed interest rate 90-Days Bank Accepted 
Bills 

Long-term fixed interest rate 10-year Government Bond 

Share dividend yield Difference between return 
of AOI Accumulated index 
and AOI price index 

Dividend Dividend Yield times AOI 
Price Index in previous 
year 

Share price return Return of AOI Price Index 

 
The parameters of the JC model were estimated using the minimum 
variance estimation method and results are summarised in Table 3.2 
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Table 3.2 Estimates of the JC Model Parameters 

 

Parameters Estimate Parameters
            
Estimate 

qθ1 -0.6094 1ω1 0.2265 
qθ2 0.6243 ls 0.0015 
qθ3 -0.9996 ρΦ0 0.0200 
qs 0.0070 ρσ 0.1000 
nω1 0.1530 y0 0.0092 
nω2 -0.2055 yω1 0.1166 
nθ3 -0.2253 yθ2 0.0933 
ns 0.0039 y3 0.7128 
  ys 0.0029 

 
 

3.4 Simulation Approach 
 
Since both the asset and liability models adopted in this paper are 
stochastic, it is intractable to analytically derive the distribution of 
ultimate surplus for a given asset portfolio. For this reason, a Monte 
Carlo simulation method is used to approximate the likely distribution 
of ultimate surplus. While a very wide range of portfolios could be 
tested in practice for this worked example, we considered only four. 
The four are 100% cash, 100% bonds, 100% equities and balanced – 
30% cash, 30% bonds, 40% equities. 
 
Apart from future asset returns and future claim payments, the value 
of the ultimate surplus depends on the value of the initial total asset 
amount. 
 
The distribution of the ultimate surplus for a portfolio with a given 
initial asset amount is estimated from the results of 10000 
simulations. The probability of a negative ultimate surplus is 
determined from the number of negative results from the 10,000 
simulation results. No account is taken of the size of the negative 
amounts. All insolvencies are assumed to be “fatal”.  
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4. Results 
 
4.1 Distribution of ultimate surplus 
Figure 4.1 shows the distributions of simulated ultimate surplus 
resulting from four different asset portfolios with initial asset amount 
of $75,000. Three of the four asset portfolios contain only one asset 
class, and the fourth contains 30% cash, 30% bond and 40% equity. 
It can be seen that the ultimate surplus from all-equity and all-bond 
asset portfolios exhibits strong skewness. The ultimate surplus from 
the all-cash portfolio and the balanced portfolio do not exhibit strong 
skewness. For the balanced portfolio, the positive skewness caused by 
inclusion of equity might have been counteracted by the negative 
skewness caused by the inclusion of bonds.  
 

It can be seen from the graphs that the distribution of ultimate 
surplus may not be normal based on the assumed stochastic asset 
and liability model. We argue that non–normal ultimate surplus is 
more likely in practice due to non-normality of either asset return or 
liability distribution. This non-normality of ultimate surplus implies 
mere mean and variance of ultimate surplus will not be enough to 
characterise the behaviour of ultimate surplus.  
 

 11



Figure 4.1  Distributions of ultimate surplus for different portfolios 
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4.2 “Closest Match” Asset Portfolios 
The initial asset amounts for given probabilities of insolvency for each 
of the four illustrative asset portfolios are shown in Table 4.1. Graphs 
of this same data are shown in Figure 4.2. 
 

Table 4.1 – Probabilities of Insolvency 
 

Initial 
Asset 

Amount 
All Cash All Bond All Equity Balanced 

50000 100.00% 100.00% 97.33% 100.00%
60000 99.99% 100.00% 87.57% 99.96%
70000 96.90% 100.00% 67.78% 95.68%
80000 50.08% 99.37% 46.15% 62.09%
90000 4.27% 78.44% 27.98% 20.16%

100000 0.06% 36.22% 16.99% 3.42%
110000 0.02% 12.06% 9.48% 0.33%
120000 0.03% 3.42% 4.88% 0.02%
130000 0.01% 0.83% 3.02% 0.05%
140000 0.01% 0.10% 1.50% 0.01%
150000 0.04% 0.03% 0.93% 0.03%
160000 0.05% 0.02% 0.43% 0.04%
170000 0.05% 0.04% 0.21% 0.03%
180000 0.01% 0.00% 0.16% 0.01%

 
 

Figure 4.2 – Probabilities of Insolvency 
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For all low probabilities of insolvency the balanced portfolio is the 
“closest match” with the cash portfolio also very attractive but at 
much higher probabilities the equity portfolio predominates. This 
result is likely to follow from the expected volatility in equity returns 
which, in the balanced portfolio are, as expected, materially reduced 
by the diversification. In no case does the bonds portfolio suggest itself 
as a candidate. Clearly the lower expected return is not outweighed by 
their lower volatility. 
 
It should, however, be noted that these relationships are, to a material 
extent, dictated by the form of the particular asset model. Using 
different asset models which reveal just how much is a matter for 
further investigation. 
 

5. Conclusion 
We have defined the “closest match” asset portfolio as 
 

The asset portfolio which, for a given probability of ultimate 
surplus being negative, requires the lowest initial asset 
amount. 

 
We have chosen this definition to recognise that, for most general 
insurers, it is the risk of insolvency which must take first place in 
their risk management strategy. Insolvency is almost always “fatal”.  
 

Our worked example shows that “closest match” can change 
dramatically for different probabilities of insolvency. In particular, for 
very low probabilities - < 1% - the balanced portfolio, or the cash 
porfolio, is the “closest match”, while for high probabilities the equity 
portfolio is preferred. 
 

We also find that the distribution of ultimate surplus is not normal. 
This suggests caution when attempting to use shortcuts to extrapolate 
from known results to other scenarios. Mere mean or variance of 
ultimate surplus may not be adequate to explain why a particular 
portfolio has lower or higher probability of insolvency than another. 
 

Further Research 
In this paper we illustrate how to obtain a “closest match” asset 
portfolio using one stochastic asset model and a hypothetical 
stochastic model of claim cashflows. We plan to continue this research 
initially by examining the variation in results arising from the use of 
different asset models. Once this task is completed a complete 
analysis of the sensitivity of results with different asset models and 
claims portfolios which cover the range of variation possible e.g. short 
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tail, long tail, annuities, etc. can be prepared. In addition the range of 
asset portfolios can be suitably extended. 
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Appendix A: Claim Run-off Triangle 
 

                                          1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1                                         902 301 702 100 586 195 456 65 475 158 369 53 162 54 126 18 312 104 243 35 476 159 370 53 329 110 256 37 108 36 84 12 10 3 8 1 31 10 24 3

2                                         451 150 351 50 293 98 228 33 237 79 185 26 81 27 63 9 156 52 121 17 238 79 185 26 165 55 128 18 54 18 42 6 5 2 4 1 16 6 13

3                                       677 226 526 75 440 147 342 49 356 119 277 40 121 40 94 13 234 78 182 26 357 119 277 40 247 82 192 27 81 27 63 9 7 2 6 1 34 18  

4                                         226 75 175 25 147 49 114 16 119 40 92 13 40 13 31 4 78 26 61 9 119 40 92 13 82 27 64 9 27 9 21 3 2 1 2 0 17

5                                         19 6 15 2 752 251 585 84 200 67 156 22 949 316 738 105 561 187 436 62 327 109 254 36 19 6 14 2 121 40 94 13 96 32 75 11

6                                         10 3 7 1 376 125 293 42 100 33 78 11 474 158 369 53 280 93 218 31 164 55 127 18 9 3 7 1 61 20 47 7 50 18 39

7                                         14 5 11 2 564 188 439 63 150 50 117 17 711 237 553 79 421 140 327 47 245 82 191 27 14 5 11 2 91 30 71 10 104 56

8                                        5 2 4 1 188 63 146 21 50 17 39 6 237 79 184 26 140 47 109 16 82 27 64 9 5 2 4 1 30 10 24 3 54  

9                                        614 205 477 68 1005 335 781 112 879 293 683 98 408 136 318 45 467 156 363 52 626 209 487 70 117 39 91 13 109 36 84 12  

10                                        307 102 239 34 502 167 391 56 439 146 342 49 204 68 159 23 233 78 182 26 313 104 244 35 58 19 45 6 56 20 44  

11                                        460 153 358 51 754 251 586 84 659 220 513 73 306 102 238 34 350 117 272 39 470 157 365 52 88 29 68 10 118 63  

12                                        153 51 119 17 251 84 195 28 220 73 171 24 102 34 79 11 117 39 91 13 157 52 122 17 29 10 23 3 60  

13                                        1018 339 792 113 1062 354 826 118 758 253 590 84 990 330 770 110 389 130 302 43 478 159 372 53 177 59 138 20  

14                                        509 170 396 57 531 177 413 59 379 126 295 42 495 165 385 55 194 65 151 22 239 80 186 27 92 33 72  

15                                        763 254 594 85 797 266 620 89 568 189 442 63 743 248 578 83 291 97 227 32 359 120 279 40 192 103  

16                                        254 85 198 28 266 89 207 30 189 63 147 21 248 83 193 28 97 32 76 11 120 40 93 13 98  

17                                        197 66 153 22 1525 508 1186 169 1129 376 878 125 1140 380 887 127 681 227 530 76 41 14 32 5  

18                                        98 33 76 11 763 254 593 85 564 188 439 63 570 190 443 63 341 114 265 38 21 8 17  

19                                        147 49 115 16 1144 381 890 127 847 282 658 94 855 285 665 95 511 170 398 57 44 24  

20                                        49 16 38 5 381 127 297 42 282 94 219 31 285 95 222 32 170 57 133 19 23  

21                                        272 91 212 30 888 296 690 99 946 315 736 105 222 74 173 25 525 175 408 58  

22                                        136 45 106 15 444 148 345 49 473 158 368 53 111 37 86 12 272 97 214  

23                                      204 68 159 23 666 222 518 74 710 237 552 79 166 55 129 18 569 306    

24                                        68 23 53 8 222 74 173 25 237 79 184 26 55 18 43 6 292  

25                                    100 33 78 11 623 208 485 69 1247 416 970 139 246 82 192 27      

26                                        50 17 39 6 312 104 242 35 623 208 485 69 128 46 100  

27                                        75 25 58 8 468 156 364 52 935 312 727 104 267 144  

28                                        25 8 19 3 156 52 121 17 312 104 242 35 137  

30                                        122 41 95 14 504 168 392 56 575 206 452  

31                                        182 61 142 20 755 252 588 84 1202 647  

32                                    61 20 47 7 252 84 196 28 617      

33                                    564 188 439 63 407 136 317 45      

34                                  282 94 219 31 211 75 166        

35                                  423 141 329 47 441 238        

36                                141 47 110 16 226          

37                                371 124 289 41          

38                              193 69 151            

39                              402 217            

40                              206            

 



Appendix B – Detailed Asset Model 
 

The model for inflation is 

 

dqt = qΦ3dqt-1 +(1- qθ1B -  qθ2B2) * qεt 

and,  qt = qt-1 +dqt 

and  Qt = Qt-1 * exp(qt) 

Where dqt = change in force of inflation over quarter t, happening 

immediately at the start of quarter t,  

qt = force of inflation per quarter applying over quarter t, from time t-1 to 

t 

Qt = CPI index at end of quarter t 

And, qεt=i.i.d.N(0, qs2) 

 

The model for short-term yield 

dnt = B(nω1- nω2B)dqt + (1- nθ3B4)* nεt 

nt = nt-1 + dnt 

Nt= (exp(nt) –1)*400 

 

Where,  dnt = change in force of treasury yields over quarter t, happening 

                       immediately at the start of quarter t, namely time t-1 

               nt = force of treasury yields per quarter applying over quarter t 

Nt = Treasury yield over quarter t as % per annum 

and,       nωt=i.i.d.N(0,ns2) 

 

The model for long-term yield is 

dlt = lω1dnt + lεt 

lt = lt-1 + dlt 

Lt = [exp(2lt) – 1] * 200 



and, dlt= change in force of bond yields over quarter t, happening 

immediately at start of quarter t, namely time t-1 

lt = force of bond yields over quarter t, from time t-1 to t 

Lt = ten year bond yield over quarter t as a nominal per annum rate 

convertible half yearly 

and 1εt=iid N(0, ls2),  

 

 

The model for share price yields 

ρt = ρΦ0 + ρεt 

Pt = Pt-1 * exp(ρt) 

where, 

ρt = force of share price yields over quarter t, time t-1 to t  

Pt = SPI at end of quarter t, time t 

and, ρεt = i.i.d.N(0, ρs2),  

 

The model for share dividends and inflation 

yt= yΦ3*yt-4 +yΦ0* (1-yΦ3)  + yω1qt-1 + yω1 yΦ3 qt-5 + yε t+ yθ2  yεt-1 

Yt = [exp(yt) – 1] *400 

 

Where yt = force of share dividend yields over quarter t, time t-1 to t 

 Yt= share dividend yield as nominal p.a. convertible quarterly 

and, yεt=i.i.d.N(0, ys2). 
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