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1 THE NEED FOR HEALTH-RELATED
INSURANCE COVERS

1. Individual flows
2. Aims of health insurance products
3. Risks inherent in the random lifetime
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1.1 INDIVIDUAL FLOWS

The following flows are considered

• inflows:
⊲ earned income (wage / salary)
⊲ pension (+ possible life annuities)

• outflows: health-related costs
⊲ medical expenses (medicines, hospitalization, surgery, etc.)
⊲ expenses related to long-term care
⊲ loss of income because of disability (caused by sickness or

accident)
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Individual flows (cont’d)
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Individual flows (cont’d)
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Individual flows (cont’d)
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Individual flows (cont’d)
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Individual flows (cont’d)
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Individual flows (cont’d)
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Individual flows (cont’d)
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Individual flows (cont’d)

 

Level premiums vs natural premiums, and the reserving process
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1.2 AIMS OF HEALTH INSURANCE PRODUCTS

1. Replace random costs with deterministic costs (insurance
premiums)
• risk coverage

2. Limit the consequences of time mismatching between income and
health costs
• pre-funding and risk coverage
• pre-funding ⇒ long term products (possibly lifelong)
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1.3 RISKS INHERENT IN THE RANDOM LIFETIME

Random lifetime ⇒ random duration of

• income (working period and retirement)

• health costs

• premiums

 

? ? 

Randomness in lifetime

Possible assessment via probability distribution of the lifetime
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Risks inherent in the random lifetime (cont’d)
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Risks inherent in the random lifetime (cont’d)

0

1000

2000

3000

4000

5000

0 10 20 30 40 50 60 70 80 90 100 110

age

dx

SIM 1881

SIM 1901

SIM 1931

SIM 1951

SIM 1961

SIM 1971

SIM 1981

SIM 1992

SIM 2002

Probability distributions of the random lifetime (Source: ISTAT - Italian Males)

– p. 16/152



ep

Risks inherent in the random lifetime (cont’d)

Difficulties originated by coexistence of:

⊲ random fluctuations of numbers of survivors around expected
values
⇒ individual longevity risk

and, more critical:

⊲ systematic deviations of numbers of survivors from expected
values, because of uncertainty in future mortality trend
⇒ aggregate longevity risk
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2 PRODUCTS IN THE AREA
OF “HEALTH INSURANCE”

1. General aspects
2. Main products
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2.1 GENERAL ASPECTS

“Health insurance”: in several countries, a large set of insurance
products providing benefits in the case of need arising from:

• accident

• illness

and leading to:

⊲ loss of income (partial or total, permanent or non-permanent)

⊲ expenses (hospitalization, medical and surgery expenses,
nursery, etc.)

– p. 19/152



ep

General aspects (cont’d)

Area: health insurance belongs to the area of insurances of the
person, which includes

• life insurance (in a strict sense): benefits are due depending on
death and survival only, i.e. on the insured’s lifetime

• health insurance: benefits are due depending on the health
status, and relevant economic consequences (and depending on
the lifetime as well)

• other insurances of the person: benefits are due depending on
events such as marriage, birth of a child, education and
professional training of children, etc.

Health insurance (in broad sense) products are usually shared by “life”
and “non-life” branches depending on national legislation and
regulation
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General aspects (cont’d)

 
 
  
 
 
  
 
 
 
 
 
 
 
 As  

LIFE NON-LIFE 
ot

he
r 

cl
as

si
fic

at
io

ns
 

  Protection  

 Insurances  
of the person  

   Health  
  Insurance  

Health insurance in the context of insurances of the person

– p. 21/152



ep

2.2 MAIN PRODUCTS

Types of benefits

• Reimbursement benefit : to meet (totally or partially) health costs,
e.g. medical expenses

• Forfeiture allowance: amounts stated at policy issue, e.g. to
provide an income when the insured is prevented by sickness or
injury from working
⊲ annuity
⊲ lump sum

• Service benefit : care service, e.g. hospital, CCRC (Continuing
Care Retirement Communities), etc.

– p. 22/152



ep

Main products (cont’d)

Classification of products

• Accident insurance

• Sickness insurance

• Health benefits as riders to a basic life insurance cover

• Critical Illness (or Dread Disease) insurance

• Disability annuities

• Long Term Care insurance

Remark

In the following (see products listed in Sect. 3.2) we focus on “sickness
insurance”
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3 BETWEEN LIFE
AND NON-LIFE INSURANCE:
THE ACTUARIAL STRUCTURE
OF SICKNESS INSURANCE

1. Introduction
2. One-year covers
3. Multi-year covers
4. From the basic model to more general models
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3.1 INTRODUCTION

Life insurance aspects

mainly concerning medium and long term contracts: disability
annuities, LTC insurance, some types of sickness insurance
products

• survival modeling
benefits are due in case of life ⇒ to be on the “safe side”,
survival probabilities should not be underestimated

• financial issues
asset accumulation (backing technical reserves), return to
policyholders
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Introduction (cont’d)

Non-Life insurance aspects

• claim frequency concerns all types of covers
problems: availability, data format, experience monitoring
and experience rating

• claim size concerns insurance covers providing reimbursement
(e.g. medical expenses), and covers in which benefits depend on
some health-related parameter, e.g. the degree of disability

• expenses
⊲ ascertainment and assessment of claims
⊲ checking the health status in case of non-necessarily

permanent disability
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Introduction (cont’d)
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“Life” and “Non-life” aspects in health insurance products
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3.2 ONE-YEAR COVERS

Products

1. medical expense reimbursement

2. forfeiture daily allowance for hospitalization

3. forfeiture daily allowance for short-term disability

General features

• Random number N of claims for the generic insured
(N = 0, 1, . . . )

• Insurer’s payment: Yj for the j-th claim

• Total annual payment to the generic insured: S

S =

{

0 if N = 0

Y1 + Y2 + · · · + YN if N > 0

– p. 28/152



ep

One-year covers (cont’d)

• Premium calculation: equivalence principle

• Net premium

Π = E[S]

or (to approx take into account timing of payments)

Π = E[S] (1 + i)−
1
2

where i = interest rate

• Hypotheses (realistic ?)
⊲ for any N = n, stochastic independence and identical

probability distribution or random variables (r.v.) Y1, Y2, . . . , Yn

⊲ stochastic independence of r.v. N, Y1, Y2, . . .

• Hypotheses ⇒ factorizing the expectation of S

E[S] = E[Y ] E[N ]

with Y random variable distributed as the Yj ’s
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One-year covers (cont’d)

Statistical estimation

• Estimate the quantities E[Y ], E[N ] (technical basis)

• Assumption: “analogous” risks, in terms of amounts (maximum
amounts) and exposure time

• Portfolio of medical expense reimbursement policies
⊲ data

◦ r = number of insured risks
◦ m = number of claims in the portfolio
◦ y1, y2, . . . , ym = amounts paid

⊲ average claim amount per claim

ȳ =
y1 + y2 + · · · + ym

m

⊲ average number of claims per policy (“claim frequency” index)

φ =
m

r
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One-year covers (cont’d)

⊲ estimates: φ → E[N ], ȳ → E[Y ]

⊲ premium

Π = ȳ φ (1 + i)−
1
2

• Portfolio of forfeiture daily allowance policies
⊲ data

◦ r = number of insured risks
◦ m = number of claims in the portfolio
◦ g1, g2, . . . , gm = claim lengths in days

⊲ average length per claim

ḡ =
g1 + g2 + · · · + gm

m

⊲ average number of claims per policy (“claim frequency” index)

φ =
m

r
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One-year covers (cont’d)

⊲ estimates: φ → E[N ], ḡ → E[Y ] (for a unitary daily allowance)
⊲ premium (for a daily allowance d)

Π = d ḡ φ (1 + i)−
1
2

⊲ morbidity coefficient = average length of claim per policy

ḡ φ =
g1 + g2 + · · · + gm

r

• A more general (and realistic) setting ⇒ allowing for:
⊲ amounts exposed to risk (annual maximum amounts)
⊲ exposure time (within 1 observation year)
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One-year covers (cont’d)

Risk factors

Split a population into risk classes, according to values assumed by
risk factors

Risk factors

• objective: physical characteristics of the insured (age, gender,
health records, occupation)

• subjective: personal attitude towards health, which determines the
individual demand for medical treatments and, consequently, the
application for insurance benefits

Incidence of age: see the following Table
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One-year covers (cont’d)

Example

x 100 φx x 100 φx

15 − 19 6.54 45 − 49 11.17

20 − 24 7.13 50 − 54 12.35

25 − 29 5.72 55 − 59 18.71

30 − 34 5.71 60 − 64 19.62

35 − 39 6.23 65 − 69 24.90

40 − 44 10.03

100 φ = 10.48

Average number of claims
as a function of the age; males (Source: ISTAT)

φ = overall average
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One-year covers (cont’d)

Premiums

• Age as a risk factor ⇒ probability distribution of the random
variable S depending on age

• In particular: estimated values ȳx, φx, ḡx as functions of age x

• Premiums

Πx = ȳx φx (1 + i)−
1
2

Πx = d ḡx φx (1 + i)−
1
2

or, considering just the average number of claims as a function of
the age

Πx = ȳ φx (1 + i)−
1
2

Πx = d ḡ φx (1 + i)−
1
2
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One-year covers (cont’d)

• “Multiplicative” model
⊲ Assume

φx = φ tx

ȳx = ȳ ux

ḡx = ḡ vx

where
- quantities φ, ȳ, ḡ do not depend on age
- coefficients tx, ux, vx express the age effect (aging

coefficients)
⊲ Practical interest: assuming that the specific age effect does

not change throughout time, claim monitoring can be
restricted to quantities φ, ȳ, ḡ observed over the whole
portfolio ⇒ more reliable estimates
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One-year covers (cont’d)

Example

Forfeiture daily allowance (d = 100)

Assumptions (ISTAT data, graduated by ANIA):

φx = 0.1048
︸ ︷︷ ︸

φ

× 0.272859 × e0.029841x

︸ ︷︷ ︸

tx

ḡx = 10.91
︸ ︷︷ ︸

ḡ

× 0.655419 × e0.008796x

︸ ︷︷ ︸

vx
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One-year covers (cont’d)

x φx ḡx Πx

30 0.07000 9.30991 64.213

35 0.08126 9.72849 77.897

40 0.09434 10.16590 94.497

45 0.10952 10.62298 114.635

50 0.12714 11.10060 139.065

55 0.14760 11.59970 168.700

60 0.17135 12.12124 204.651

65 0.19892 12.66623 248.264

70 0.23093 13.23572 301.171

Average number of claims,
average time (days) per claim,

equivalence premium
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3.3 MULTI-YEARS COVERS

Premiums

Medical expense reimbursement or forfeiture daily allowance

Age x at policy issue, term m years

Single premium

Πx,m⌉ =
m−1∑

h=0

hpx (1 + i)−h Πx+h

with hpx probability, for a person age x, of being alive at age x + h

Natural premiums: Πx, Πx+1, . . . , Πx+m−1, with

Πx < Πx+1 < · · · < Πx+m−1

(see table above)
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Multi-year covers (cont’d)

Single premium in a multiplicative model

For example, if

Πx = ȳx φx (1 + i)−
1
2 = ȳ φ ux tx (1 + i)−

1
2

then

Πx,m⌉ =
m−1∑

h=0

hpx (1 + i)−h ȳx+h φx+h (1 + i)−
1
2

= ȳ φ
︸︷︷︸

K (indep. of age)

m−1∑

h=0

hpx (1 + i)−h−
1
2 ux+h tx+h

︸ ︷︷ ︸

wx,h (dependent on age)

= K

m−1∑

h=0

wx,h

= K πx,m⌉
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Multi-year covers (cont’d)

Annual level premium (payable for m years)

Px,m⌉ =
Πx,m⌉

äx:m⌉

we have

Px,m⌉ =

∑m−1
h=0 hpx (1 + i)−h Πx+h
∑m−1

h=0 hpx (1 + i)−h

thus: annual level premium = arithmetic weighted average of the
natural premiums
Consequence: mathematical reserve

 

Annual level premiums vs natural premiums, and mathematical reserve

– p. 41/152



ep

Multi-year covers (cont’d)

Example

Hospitalization daily benefit

Data: SIM1992; i = 0.03; d = 100; φx, ḡx as above

x m = 5 m = 10 m = 15 m = 20

30 325.944 664.419 1 015.590 1 378.402

35 395.439 805.711 1 229.582 1 663.801

40 479.337 974.563 1 481.880 1 994.168

45 580.127 1 174.416 1 774.530 2 364.920

50 700.958 1 408.786 2 105.144 2 763.054

55 844.022 1 674.369 2 458.869 −
60 1 011.197 1 966.560 − −
65 1 203.975 − − −

Single premiums

– p. 42/152



ep

Multi-year covers (cont’d)

x m = 5 m = 10 m = 15 m = 20

30 69.308 76.120 83.439 91.259

35 84.078 92.337 101.184 110.583

40 101.992 111.984 122.636 133.849

45 123.715 135.776 148.529 161.725

50 150.057 164.560 179.668 194.902

55 181.979 199.300 216.941 −
60 220.649 241.157 − −
65 267.469 − − −

Annual level premiums
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Multi-year covers (cont’d)

 

     Natural premium 
     Level premium 

 

Natural premiums and annual level

premiums; x = 45, m = 15

Natural premiums for various ages

at policy issue; m = 15
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Multi-year covers (cont’d)

Reserves

Prospective mathematical reserve (or aging reserve, or senescence
reserve)

Vt = Πx+t,m−t⌉ − Px,m⌉ äx+t:m−t⌉; t = 0, 1, . . . , m (∗)

with

V0 = Vm = 0

From (∗) we find

Vt = Πx+t,1⌉−Px,m⌉+1px+t (1+i)−1 (Πx+t+1,m−t−1⌉−Px,m⌉ äx+t+1:m−t−1⌉)

and, as Πx+t,1⌉ = Πx+t, we have the recursion

Vt + Px,m⌉ = Πx+t + 1px+t (1 + i)−1 Vt+1

⇒ technical balance in year (t, t + 1)

– p. 45/152



ep

Multi-year covers (cont’d)

Example

Hospitalization daily benefit. Data: as above

 
 

Reserves for two ages at policy issue;

m = 15

Reserves for various policy terms;

x = 35
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3.4 FROM THE BASIC MODEL
TO MORE GENERAL MODELS

Basic model: a “static” approach, under

• an individual perspective

• a portfolio (or population) perspective

Possible generalizations, in particular allowing for dynamic features:

⊲ claim frequency and claim cost dynamics at portfolio level

⊲ individual claim experience

⊲ longevity dynamics and related consequences in lifelong sickness
covers
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From the basic model to more general models (cont’d)

 

 

 Basic model: 

 a “static” approach 

Changes in: 
• overall claim frequency 
• overall claim costs 
  Indexation mechanisms 

[Chapter 4] 

 

Individual experience rating 

  Premium adjustments 

[Chapter 5] 

(Aggregate) longevity risk 
In lifelong covers 

  Comparing premium   
      arrangements 

 

[Chapter 6] 

Introducing dynamic aspects
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4 INDEXATION MECHANISMS

1. Introduction
2. The adjustment model

– p. 49/152



ep

4.1 INTRODUCTION

Refer, for example, to medical reimbursement policies

Possible changes, at a portfolio level (or population level), in

• claim frequency

• average cost per claim (e.g. because of inflation)

throughout the policy duration

Approaches:

1. change policy conditions, so that the actuarial value of future
benefits keeps constant throughout time; in particular
(a) raise the deductible (if any)
(b) lower the maximum amount

2. allow for variations in actuarial values of benefits because of
change in claim frequency and / or average cost per claim
⇒ indexing policy elements (future premiums and / or reserve) to
keep the equivalence principle fulfilled
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Introduction (cont’d)

In what follows, we focus on approach 2 (assuming increase in the
actuarial value of benefits)

Refer, for example, to hospitalization benefits

Interest in keeping constant the purchasing power of the daily
allowance; then

⇒ indexation of benefits

⇒ need for approach 2
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4.2 THE ADJUSTMENT MODEL

Actuarial model

• equivalence at time t (see the definition of the reserve (∗))

Vt + Px,m⌉ äx+t:m−t⌉ = Πx+t,m−t⌉

• assume the multiplicative model

Πx+t,m−t⌉ = K πx+t,m−t⌉

• assume that changes only concern the factor K (whilst do not
concern the specific effect of age)

• change in the factor

K ⇒ K (1 + j[K])
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The adjustment model (cont’d)

• example: medical expense reimbursement

K = ȳ φ

⊲ change in the average cost per claim because of inflation

K = ȳ φ ⇒ K (1 + j[K]) = ȳ (1 + j[K])
︸ ︷︷ ︸

φ

• example: hospitalization benefit (daily allowance)

K = d ḡ φ

⊲ change in the daily allowance to keep the purchasing power

K = d ḡ φ ⇒ K (1 + j[K]) = d (1 + j[K])
︸ ︷︷ ︸

ḡ φ
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The adjustment model (cont’d)

• change in the actuarial value

Πx+t,m−t⌉ ⇒ Πx+t,m−t⌉ (1 + j[K]) = K (1 + j[K]) πx+t,m−t⌉

• new equivalence condition at time t:

(Vt + Px,m⌉ äx+t:m−t⌉)(1 + j[K]) = Πx+t,m−t⌉ (1 + j[K]) (◦)

or, in more general terms:

Vt (1+j[V])+Px,m⌉(1+j[P]) äx+t:m−t⌉ = Πx+t,m−t⌉ (1+j[K]) (◦◦)

with j[V], j[P] fulfilling equation (◦)

• equivalence condition on the increments:

Vt j[V] + Px,m⌉ j[P] äx+t:m−t⌉ = Πx+t,m−t⌉ j[K] (◦◦◦)
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The adjustment model (cont’d)

• from (◦◦◦) we find:

j[K] =
Vt j[V] + Px,m⌉ j[P] äx+t:m−t⌉

Πx+t,m−t⌉

and then:

j[K] =
Vt j[V] + Px,m⌉ j[P] äx+t:m−t⌉

Vt + Px,m⌉ äx+t:m−t⌉

⇒ relation among the three adjustment rates: j[K] is the
weighted arithmetic mean of j[V], j[P]

• usually, application of (◦◦◦) each year, to express an annual
adjustment of the actuarial value of the insured benefits
⇒ adjustment rates at time t:

j
[K]
t , j

[V]
t , j

[P]
t
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The adjustment model (cont’d)

• in pratice:

⊲ increase in the reserve (rate j
[V]
t ) financed by the insurer

(profit participation)

⊲ increase in premiums (rate j
[P]
t ) paid by the policyholder

• in general:

⊲ if j
[V]
t < j

[K]
t ⇒ j

[P]
t > j

[K]
t

⊲ if j
[P]
t < j

[K]
t ⇒ j

[V]
t > j

[K]
t

(because j
[K]
t is a weighted arithmetic mean of j

[V]
t , j

[P]
t )

Example

Medical expense reimbursement policy
x = 50, m = 15
annual level premiums payable for the whole policy duration
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The adjustment model (cont’d)

t j
[K]
t j

[V]
t j

[P]
t

1 0.00086 0.05 0

2 0.00174 0.05 0

3 0.00263 0.05 0

4 0.00355 0.05 0

5 0.00449 0.05 0

6 0.00544 0.05 0

7 0.00641 0.05 0

8 0.00739 0.05 0

9 0.00839 0.05 0

10 0.00939 0.05 0

11 0.01040 0.05 0

12 0.01142 0.05 0

13 0.01244 0.05 0

14 0.01346 0.05 0

Table 1 - Benefit adjustment maintained

via reserve increment only
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The adjustment model (cont’d)

t j
[K]
t j

[V]
t j

[P]
t

1 0.06 0 0.06105

2 0.06 0 0.06204

3 0.06 0 0.06299

4 0.06 0 0.06389

5 0.06 0 0.06473

6 0.06 0 0.06553

7 0.06 0 0.06626

8 0.06 0 0.06697

9 0.06 0 0.06763

10 0.06 0 0.06823

11 0.06 0 0.06879

12 0.06 0 0.06930

13 0.06 0 0.06977

14 0.06 0 0.07020

Table 2 - Only premium increment to maintain

a given benefit adjustment
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The adjustment model (cont’d)

t j
[K]
t j

[V]
t j

[P]
t

1 0.06 0.04 0.06036

2 0.06 0.04 0.06069

3 0.06 0.04 0.06104

4 0.06 0.04 0.06138

5 0.06 0.04 0.06171

6 0.06 0.04 0.06204

7 0.06 0.04 0.06236

8 0.06 0.04 0.06268

9 0.06 0.04 0.06300

10 0.06 0.04 0.06330

11 0.06 0.04 0.06360

12 0.06 0.04 0.06389

13 0.06 0.04 0.06418

14 0.06 0.04 0.06445

Table 3 - Premium increment, given the reserve increment,

to maintain a chosen benefit adjustment
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The adjustment model (cont’d)

Remark

Sickness insurance policies (in particular temporary policies) are not
“accumulation” products ⇒ the mathematical reserve is small (see
numerical examples in the previous section), provided that the policy
duration is not too long

Then:

⊲ the only increment of the reserve cannot maintain the raise in the
actuarial value of future benefits (see Table 1)

⊲ the raise in the actuarial value of future benefits can be financed by a
reasonable increment of future premiums only (see Table 2)
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5 INDIVIDUAL EXPERIENCE RATING:
SOME MODELS
see:
E. Pitacco (1992), Risk classification and experience ratin g in sickness
insurance, Transactions of the 24th International Congress of Actuari es,
Montreal, vol. 3: 209-221

1. Introduction
2. The inference model
3. The experience-rating model
4. Some particular rating systems
5. Numerical examples
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5.1 INTRODUCTION

In several countries, many policies provide a one-year cover

The insurer is not obliged to renew the policy

In the case of (too many) claims ⇒ no renewal

What is better: no cover or higher (experience-based) premium ?

Ratemaking according to individual characteristics

⊲ a-priori classification
based on observable risk factors (age, current health
conditions, profession, gender (?), . . . )

⊲ experience-based classification
claim experience providing information, in order to partially
“replace” risk characteristics which are unobservable at
policy issue
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Introduction (cont’d)

In this chapter we define:

• a Bayesian inference model fitting the particular characteristics of
sickness insurance (see Sect. 5.2), which in particular provides a
“straight” experience rating model (Sect. 5.3)

• some practical rating systems (see Sect. 5.4), such as Bonus
Malus (BM) and No-Claim Discount (NCD), relying on the
inference model
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5.2 THE INFERENCE MODEL

Notation

• x = insured’s age at policy issue, i.e. time 0

• m = policy term

• Nx+h = random number of claims between age x + h and
x + h + 1, h = 0, 1, . . . , m − 1

• Nx(k) =
k−1∑

h=0

Nx+h = cumulated random number of claims up to

time k

• Θ = random parameter in the probabilistic structure of
Nx, Nx+1, . . . , Nx+m−1

• θ = generic outcome of Θ
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The inference model (cont’d)

Hypotheses

• given Θ = θ, the random numbers Nx, Nx+1, . . . , Nx+m−1 are
independent ( ⇒ conditional independence)

• the probability distribution of Nx+h, h = 0, 1, . . . , m − 1, is Poisson
with parameter tx+h θ, briefly Pois(tx+h θ):

P[Nx+h = n|Θ = θ] = e−tx+hθ (tx+h θ)n

n!
; n = 0, 1, . . .

then:
E[Nx+h|Θ = θ] = tx+h θ

⇒ tx+h expresses the age effect; in practice

tx < tx+1 < tx+2 < . . .
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The inference model (cont’d)

• the probability distribution of Θ is Gamma with given (positive)
parameters α, β, briefly Gamma(α, β) ⇒ probability density
function (pdf) given by

g(θ) =
βα

Γ(α)
θα−1 e−β θ

with

E[Θ] =
α

β

Var[Θ] =
α

β2
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The inference model (cont’d)

Some results

• Unconditional distribution of Nx+h, h = 0, 1, . . . , m − 1

P[Nx+h = n] =

∫ +∞

0

P[Nx+h = n|Θ = θ] g(θ) dθ

=

(
β

tx+h

)α

Γ(α + n)

Γ(α) n!
(

β
tx+h

+ 1
)α+n

that is, a negative binomial:

NegBin

(

α,

β
tx+h

β
tx+h

+ 1

)

– p. 67/152



ep

The inference model (cont’d)

• Then:

E[Nx+h] =
α
β

tx+h

= tx+h E[Θ]

Var[Nx+h] =
α
(

β
tx+h

+ 1
)

(
β

tx+h

)2

• Given Θ = θ, the probability distribution of Nx(k) is

Pois

(

θ

k∑

h=1

tx+h−1

)

Remark

The expression E[Nx+h] = tx+h E[Θ] for the expected value corresponds
to φx+h = tx+h φ used in Chap. 3
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The inference model (cont’d)

• Then, the unconditional distribution of Nx(k) is

P[Nx(k) = n] =

∫ +∞

0

P[Nx(k) = n|Θ = θ] g(θ) dθ

=

(
β

∑
k
h=1

tx+h−1

)α

Γ(α + n)

Γ(α) n!
(

β
∑

k
h=1

tx+h
+ 1
)α+n ; n = 0, 1, . . .

that is,

NegBin



α,

β
∑

k
h=1

tx+h−1

β
∑

k
h=1

tx+h−1

+ 1




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The inference model (cont’d)

The inference procedure

• Claim record (k < m)

nx, nx+1, . . . , nx+k−1

• Posterior distribution of the parameter Θ:

g(θ|nx, nx+1, . . . , nx+k−1)

∝ g(θ) P[(Nx = nx) ∧ (Nx+1 = nx+1) ∧ · · · ∧ (Nx+k−1 = nx+k−1)|Θ = θ]

∝ e−θ (β+
∑k−1

h=0
tx+h) θα+

∑k−1

h=0
nx+h −1

that is, Gamma
(

α +
∑k−1

h=0 nx+h, β +
∑k−1

h=0 tx+h

)

, with

E[Θ|nx, nx+1, . . . , nx+k−1] =
α +

∑k−1
h=0 nx+h

β +
∑k−1

h=0 tx+h
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The inference model (cont’d)

• Unconditional distribution of Nx+j , j ≥ k, calculated by using
g(θ|nx, nx+1, . . . , nx+k−1) (instead of g(θ))

• In particular:

E[Nx+j |nx, nx+1, . . . , nx+k−1] = tx+j
α +

∑k−1
h=0 nx+h

β +
∑k−1

h=0 tx+h

(◦)

Remark

⊲ sufficient statistics given by
(
∑k−1

h=0
tx+h,

∑k−1

h=0
nx+h

)

⊲ Eq. (◦) ⇒ credibility formula

E[Nx+j |nx, nx+1, . . . , nx+k−1] =

tx+j










α

β

β

β +
∑k−1

h=0
tx+h

+

∑k−1

h=0
nx+h

∑k−1

h=0
tx+h

∑k−1

h=0
tx+h

β +
∑k−1

h=0
tx+h

︸ ︷︷ ︸

credibility factor zx,k









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The inference model (cont’d)

Example 1

Assume:

E[Ny] = 0.034761 × 1.032044y (y ≥ 20) (∗)

Let x = 40 = age at policy issue

We find:

h E[N40+h]

0 0.123

1 0.127

2 0.131

3 0.135

4 0.139

5 0.144

Expected number of claims
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The inference model (cont’d)

Example 2

Purpose: to determine the t ’s (useful in inference
procedures)

We know that
E[Ny] = ty E[Θ]

Assume y′ as reference age, and set ty′ = 1

Then:

ty =
E[Ny]

E[Ny′ ]

For example, with y′ = 20 and the assumption (∗) we find the
following Table
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The inference model (cont’d)

y ty

20 1.000

25 1.171

30 1.371

35 1.605

40 1.879

45 2.200

50 2.576

55 3.016

60 3.531

65 4.134

70 4.841

Ageing parameters
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The inference model (cont’d)

Example 3

Assume
• parameters of the gamma distribution:

α = 1.1; β = 16.83977

• age at policy issue x = 40

We find the following credibility factors:

k zx,k

1 0.100

2 0.185

3 0.257

4 0.319

5 0.373

Credibility factors
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The inference model (cont’d)

We find the following expected values of N45, depending on
the previous claim experience

4∑

h=0

n40+h E[N45 |n40, . . . , n44]

0 0.090

1 0.172

2 0.254

3 0.336

4 0.418

5 0.500

6 0.582

. . . . . .

Expected number of claims according to claim experience
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5.3 THE EXPERIENCE-RATING MODEL

Annual level premium, payable for m years, if no experience rating is
adopted

P =

∑m−1
h=0 hpx (1 + i)−h Πx+h

äx:m⌉

where, for a medical expenses insurance cover:

Πx+h = ȳ E[Nx+h] (1 + i)−
1
2

Assuming ȳ = 1, we have:

P =

∑m−1
h=0 hpx (1 + i)−h− 1

2 E[Nx+h]

äx:m⌉

(in line with an experience rating system based on the observed
number of claims)
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The experience-rating model (cont’d)

In presence of experience rating

• in principle: in every year different premiums should be
determined and charged according to each individual claim record

• in practice: a too complex premium system would be generated

To obtain an applicable premium system, we have to state:

⊲ times at which premium adjustments may occur

⊲ the number of different premiums at each adjustment time

⊲ relationships between claim experience and adjusted premiums

See following notation and Figure 1
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The experience-rating model (cont’d)

Notation

• r = number of premium adjustments

• k1, . . . , kr = times of premium adjustments; k = k1 if r = 1

• νmax = number of premiums in the experience rating system

• ν = index of premium (ν = 1, 2, . . . , νmax)

• k(ν) = adjustment time at which premium ν may be charged

• σ(ν) = a set of outcomes of Nx(k(ν)):
Nx(k(ν)) ∈ σ(ν) ⇔ premium ν will be charged (at time k(ν))

• q(x, h, n) = P[Nx(h) = n] = probability of n claims up to time h

• s(ν) =
∑

n∈σ(ν)

q(x, k(ν), n) = probability that premium ν will be

charged (at time k(ν))

• P (ν) = amount of premium ν
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The experience-rating model (cont’d)

 

  = 1 
P(1) 

  = 2 
P(2) 
n(k) = 0 

  = 3 
P(3) 
n(k) ≥ 1 

time m k 0 

Figure 1 – An experience-based rating system; 1 adjustment time
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The experience-rating model (cont’d)
 

time m 0 k2 k1 

  = 2 
P(2) 
n(k1) = 0 

  = 1 
P(1) 

  = 3 
P(3) 
n(k1) ≥ 1 

  = 4 
P(4) 
n(k2) = 0 
 

  = 5 
P(5) 
1  n(k2)  2 

  = 6 
P(6) 
n(k2) ≥ 3 

Figure 2 – An experience-based rating system; 2 adjustment times
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The experience-rating model (cont’d)

Premiums

P (1) =

k1−1∑

h=0

hpx (1 + i)−h− 1
2 E[Nx+h]

äx:k1⌉
(∗)

P (ν) =

kj+1−1
∑

h=kj

h−kj
px+kj

(1 + i)−h−kj−
1
2 E

[

Nx+h |
∨

n∈σ(ν)

(Nx(kj) = n)
]

äx+kj :kj+1−kj⌉

(∗∗)
ν = 2, . . . , νmax; j = 1, . . . , r, with kr+1 = m
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The experience-rating model (cont’d)

Note that:

• Expected values in (∗) calculated before any specific experience;
then

E[Nx+h] = tx+h E[Θ] = tx+h
α

β

• Conditional expected values in (∗∗) depend on the specific
information provided by the adoption of premium P (ν), i.e. by the
set of outcomes of Nx(kj) which imply P (ν). We have:

E

[

Nx+h |
∨

n∈σ(ν)

Nx(kj) = n
]

=
∑

n∈σ(ν)

E[Nx+h|Nx(kj) = n]
q(x, kj , n)

∑

n∈σ(ν) q(x, kj , n)

=
1

s(ν)

∑

n∈σ(ν)

E[Nx+h|Nx(kj) = n] q(x, kj , n)
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The experience-rating model (cont’d)

• As Nx(kj) =
∑kj−1

i=0 Nx+i , we have (according to (◦)):

E[Nx+h|Nx(kj) = n] = tx+h
α + n

β +
∑kj−1

i=0 tx+i

By using the equations above, we can calculate

P (1), P (2), . . . , P (νmax)

⇒ experience rating system fully defined
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5.4 SOME PARTICULAR RATING SYSTEMS

Let Πx,m⌉ denote the single premium for a m-year insurance cover:

Πx,m⌉ =
m−1∑

h=0

hpx (1 + i)−h Πx+h =
m−1∑

h=0

hpx (1 + i)−h− 1
2 E[Nh]

It can be proved that the set of premiums P (1), P (2), . . . , P (νmax) (see
(∗), (∗∗) in Sect. 5.3) fulfills the equivalence principle, that is

νmax∑

ν=1

s(ν) P (ν) äx+kj :kj+1−kj⌉ = Πx,m⌉

Now consider the νmax amounts

P̄ (1), P̄ (2), . . . , P̄ (νmax)
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Some particular rating systems (cont’d)

We say that the P̄ (ν) are equivalence premiums if and only if they fulfill
the equivalence principle, i.e.

νmax∑

ν=1

s(ν) P̄ (ν) äx+kj :kj+1−kj⌉ = Πx,m⌉ (◦◦)

Note that:

• A particular solution of (◦◦) is given by P (1), P (2), . . . , P (νmax)

• Other particular solutions of (◦◦) can be found by stating specific
relationships among the premiums, e.g. in order to smooth the
sequences of premiums implied by the various claim records

• For example
⊲ set

P̄ (ν) = fν P̄ (1); ν = 2, 3, . . . , νmax

⊲ solve (◦◦) with respect to P̄ (1)

⊲ for given fν ’s, calculate P̄ (2), . . . , P̄ (νmax)
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Some particular rating systems (cont’d)

• Alternative approach

⊲ define P̄ as a reference premium (not necessarily charged to
the contract, whatever the node)

⊲ set
P̄ (ν) = fν P̄ ; ν = 1, 2, . . . , νmax

⊲ solve (◦◦) with respect to P̄

⊲ for given fν ’s, calculate P̄ (1), P̄ (2), . . . , P̄ (νmax)

• Any premium system

P̄ (1), P̄ (2), . . . , P̄ (νmax)

(other than P (1), P (2), . . . , P (νmax)) implies a solidarity effect
among insureds
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Some particular rating systems (cont’d)

Remarks

1. Note that, when the approach based on the reference premium is
adopted, we may find, because of the choice of the reference
premium P̄ and the parameters f ’s,

P̄ (1) < P (1)

where P (1) is the initial premium in a straight experience-rating
model
Then
⊲ the insured is not fully financed throughout the first period, i.e.

(0, k1)

⊲ loss in case of lapses
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Some particular rating systems (cont’d)

2. As regards the mathematical reserve:
(a) in the straight experience rating model, the P (ν)’s fulfill the

equivalence principle in each period, i.e. (0, k1), (k1, k2), . . . ,
then
⊲ a small reserve required in each period because of the

annual increase in natural premiums
⊲ reserve = 0 at times k1, k2, . . .

(b) in other experience rating systems, the P̄ (ν)’s only ensure the
equivalence over the cover period (0, m) considered as a
whole, then
⊲ a higher reserve may be required in each period
⊲ reserve 6= 0 at times k1, k2, . . .
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Some particular rating systems (cont’d)

NCD systems
A no-claim discount (NCD) system can be defined as a solution of (◦◦)

For example (see Figure 3):

• r = 1

• k = time of premium adjustment

• νmax = 3

• P̄ (1) = initial premium

• P̄ (2) = f2 P̄ (1); P̄ (3) = P̄ (1)

• 0 < f2 < 1

• σ(2) = {0}; σ(3) = {1, 2, . . . }
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Some particular rating systems (cont’d) 

  = 1 
P(1) 

  = 2 
P(2) = f2 P(1) 
n(k) = 0 

  = 3 
P(3) = P(1) 
n(k) ≥ 1 

_ _ 

_ _ 

_ 

Figure 3 – NCD system: example with 1 adjustment time
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Some particular rating systems (cont’d)

Another example (see Figure 4):

• r = 2

• k1, k2 = times of premium adjustment

• νmax = 5

• P̄ (1) = initial premium

• P̄ (2) = f2 P̄ (1); P̄ (3) = P̄ (1); P̄ (4) = f4 P̄ (1); P̄ (5) = P̄ (1)

• 0 < f4 < f2 < 1

• σ(2) = {0}; σ(3) = {1, 2, . . . }; σ(4) = {0}; σ(5) = {1, 2, . . . }
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Some particular rating systems (cont’d) 

  = 1 
P(1) 

  = 2 
P(2) = f2 P(1) 
n(k1) = 0 

  = 4 
P(4) = f4 P(1) 
n(k2) = 0 

  = 3 
P(3) = P(1) 
n(k1) ≥ 1 

  = 5 
P(5) = P(1) 
n(k2) ≥ 1 

_ 

_ _ 

_ _ _ _ 

_ _ 

Figure 4 – NCD system: example with 2 adjustment times
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Some particular rating systems (cont’d)

BM systems
A bonus-malus (BM) system can be defined as a solution of (◦◦)

For example (see Figure 5):

• r = 1

• k = time of premium adjustment

• νmax = 5

• P̄ (1) = initial premium

• P̄ (2) = f2 P̄ (1); P̄ (3) = P̄ (1); P̄ (4) = f4 P̄ (1); P̄ (5) = f5 P̄ (1)

• 0 < f2 < 1 < f4 < f5

• σ(2) = {0}; σ(3) = {1}; σ(4) = {2}; σ(5) = {3, 4, . . . }
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Some particular rating systems (cont’d)

 

  = 1 
P(1) 

  = 2 
P(2) = f2 P(1) 
n(k) = 0 

  = 3 
P(3) = P(1) 
n(k) = 1 

  = 4 
P(4) = f4 P(1) 
n(k) = 2 

  = 5 
P(5) = f5 P(1) 
n(k) ≥ 3 

_ 

_ _ 

_ _ 

_ _ 

_ _ 

Figure 5 – BM system: an example
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Some particular rating systems (cont’d)

AD systems
An advance-discount (AD) system can be defined as a solution of (◦◦)

For example (see Figure 6):

• r = 1

• k = time of premium adjustment

• νmax = 3

• P̄ = reference premium

• P̄ (1) = P̄ (2) = f P̄ ; P̄ (3) = g P̄

• f < g
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Some particular rating systems (cont’d) 

  = 1 
P(1)  f  P 

  = 2 
P(2)  f  P 
n(k) = 0 

  = 3 
P(3)  g P 
n(k) ≥ 1 

_ _ 

_ _ 

_ _ 

Figure 6 – AD system: example with 1 adjustment time
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Some particular rating systems (cont’d)

Another example (see Figure 7):

• r = 2

• k1, k2 = times of premium adjustment

• νmax = 5

• P̄ = reference premium

• P̄ (1) = f1 P̄ ; P̄ (2) = f2 P̄ ; P̄ (3) = f3 P̄ ; P̄ (4) = f4 P̄ ; P̄ (5) = f5 P̄

• f4 ≤ f2 = f1 < f3 = f5

• σ(2) = {0}; σ(3) = {1, 2, . . . }; σ(4) = {0}; σ(5) = {1, 2, . . . }
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Some particular rating systems (cont’d) 

  = 1 
P(1)  f1 P 

  = 2 
P(2)  f2 P 
n(k1) = 0 

  = 3 
P(3)  f3 P 
n(k1) ≥ 1 

  = 4 
P(4)  f4 P 
n(k2) = 0 

  = 5 
P(5)  f5 P 
n(k2) ≥ 1 

_ _ 

_ _ 

_ _ 

_ _ 

_ _ 

Figure 7 – AD system: example with 2 adjustment times
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5.5 NUMERICAL EXAMPLES

The following examples are based on:

E[Ny] = 0.034761 × 1.032044y (y ≥ 20)

Ageing coefficients ty given by the previous table

Let x = 40 = age at policy issue

Parameters of the gamma distribution of Θ:

α = 1.1; β = 16.83977

The following arrangements are considered:

⊲ straight experience rating (Examples 1, 2, 3, 4)

⊲ NCD (Examples 5, 6, 7)

⊲ BM (Example 8)

⊲ AD (Examples 9, 10, 11)

– p. 100/152



ep

Numerical examples (cont’d)

Example 1

Straight experience rating
m = 5
k = 2
(see Figure 1)

time k

observed
node ν premium P (ν)

s(ν) = probability
number of of charging

claims n(k) the premium P (ν)

0 − 1 0.12225 1

2 0 2 0.10780 0.79867

2 ≥ 1 3 0.22920 0.20133
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Numerical examples (cont’d)

Example 2

Straight experience rating
m = 5
k = 3
(see Figure 1)

time k

observed
node ν premium P (ν)

s(ν) = probability
number of of charging

claims n(k) the premium P (ν)

0 − 1 0.12416 1

3 0 2 0.09987 0.72142

3 ≥ 1 3 0.22377 0.27858
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Numerical examples (cont’d)

Example 3

Straight experience rating
m = 5
k = 3

time k

observed
node ν premium P (ν)

s(ν) = probability
number of of charging

claims n(k) the premium P (ν)

0 − 1 0.12416 1

3 0 2 0.09987 0.72142

3 1 3 0.19066 0.20382

3 2 4 0.28145 0.05497

3 ≥ 3 5 0.40456 0.01979
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Numerical examples (cont’d)

Example 4

Straight experience rating
m = 10
k1 = 3, k2 = 7

time k

observed
node ν premium P (ν)

s(ν) = probability
number of of charging

claims n(k) the premium P (ν)

0 − 1 0.12416 1

3 0 2 0.10298 0.72142

3 ≥ 1 3 0.23075 0.27858

7 0 4 0.08322 0.50517

7 ≥ 1 5 0.22792 0.49483
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Numerical examples (cont’d)

Example 5

NCD system
m = 5
k = 3
(see Figure 3)

time k

observed
node ν premium P̄ (ν)

s(ν) = probability
number of of charging

claims n(k) the premium P̄ (ν)

0 − 1 0.13532 1

3 0 2 0.10826 0.72142

3 ≥ 1 3 0.13532 0.27858
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Numerical examples (cont’d)

Example 6

NCD system
m = 5
k = 3
f2 = 0.70
(see Figure 3)

time k

observed
node ν premium P̄ (ν)

s(ν) = probability
number of of charging

claims n(k) the premium P̄ (ν)

0 − 1 0.13931 1

3 0 2 0.09751 0.72142

3 ≥ 1 3 0.13931 0.27858
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Numerical examples (cont’d)

Example 7

NCD system
m = 10
k1 = 3, k2 = 7
f2 = 0.75; f4 = 0.60
(see Figure 4)

time k

observed
node ν premium P̄ (ν)

s(ν) = probability
number of of charging

claims n(k) the premium P̄ (ν)

0 − 1 0.15244 1

3 0 2 0.12195 0.72142

3 ≥ 1 3 0.15244 0.27858

7 0 4 0.10671 0.50517

7 ≥ 1 5 0.15244 0.49483
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Numerical examples (cont’d)

Example 8

BM system
m = 5
k = 3
f2 = 0.75; f4 = 1.30; f5 = 1.60
(see Figure 5)

time k

observed
node ν premium P̄ (ν)

s(ν) = probability
number of of charging

claims n(k) the premium P̄ (ν)

0 − 1 0.13573 1

3 0 2 0.10180 0.72142

3 1 3 0.13573 0.20382

3 2 4 0.17645 0.05497

3 ≥ 3 5 0.21717 0.01979
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Numerical examples (cont’d)

Example 9

AD system
m = 5
k = 2
f = 0.90; g = 1.20
(see Figure 6)

time k

observed
node ν premium P̄ (ν)

s(ν) = probability
number of of charging

claims n(k) the premium P̄ (ν)

0 − 1 0.12324 1

2 0 2 0.12324 0.79867

2 ≥ 1 3 0.16432 0.20133
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Numerical examples (cont’d)

Example 10

AD system
m = 5
k = 2
f = 0.80; g = 1.20
(see Figure 6)

time k

observed
node ν premium P̄ (ν)

s(ν) = probability
number of of charging

claims n(k) the premium P̄ (ν)

0 − 1 0.12099 1

2 0 2 0.12099 0.79867

2 ≥ 1 3 0.18149 0.20133
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Numerical examples (cont’d)

Example 11

AD system
m = 5
k = 2
(see Figure 6)

time k

observed
node ν premium P̄ (ν)

s(ν) = probability
number of of charging

claims n(k) the premium P̄ (ν)

0 − 1 0.11500 1

2 0 2 0.11500 0.79867

2 ≥ 1 3 0.22727 0.20133
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6 THE (AGGREGATE) LONGEVITY RISK
IN LIFELONG COVERS
see:
A. Olivieri, E. Pitacco (2002), Premium systems for post-re tirement
sickness covers, Belgian Actuarial Bulletin , 2: 15-25. Available at:
http://www.belgianactuarialbulletin.be/browse.php?issue=2#2-3

1. Introduction
2. Sickness insurance and longevity risk
3. Loss functions
4. Premium systems
5. The process risk
6. The uncertainty risk
7. Premium loadings
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6.1 INTRODUCTION

Focus on premium systems for lifelong insurance covers providing
sickness benefits (viz reimbursement of medical expenses)

Causes of risk affecting lifelong sickness covers:

(a) random number of claim events in any given insured period

(b) random amount (medical expenses refunded) relating to each
claim

(c) random lifetime of the insured

Causes (a) and (b):

⊲ common to all covers in general insurance ⇒ safety loading

⊲ difficulties in lifelong sickness covers because of paucity of data

Cause (c):

⊲ biometric risk, and in particular longevity risk

⊲ impact related to the premium system adopted
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Introduction (cont’d)

Premium systems considered in the following;

(1) single premium at retirement age, meeting all expected costs

(2) sequence of level premiums

(3) sequence of “natural” premiums

(4) mixtures of (1) and (2) ⇒ upfront premium + sequence of level
premiums

(5) mixtures of (1) and (3) ⇒ upfront premium + sequence of
premiums proportional to natural premiums

In particular:

• system (1)
⊲ policyholder’s point of view: interesting if a lump sum is

available at retirement
⊲ insurer’s point of view: high risk, related to longevity
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Introduction (cont’d)

• system (3)
⊲ policyholder’s point of view: dramatic increase of premiums at

very old ages
⊲ insurer’s point of view: lowest risk related to longevity

• system (4)
⊲ an interesting compromise
⊲ adopted by Continuous Care Retirement Communities

(CCRC)
⋄ advance fee (upfront premium), plus
⋄ sequence of periodic fees (periodic premiums), possibly

adjusted for inflation
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6.2 SICKNESS INSURANCE AND LONGEVITY RISK

Main aspects of mortality trends

(a) decrease in annual probabilities of death

(b) increasing life expectancy

(c) increasing concentration of deaths around the mode of the curve
of deaths (rectangularization of the survival curve)

(d) shift of the mode of the curve of deaths towards older ages
(expansion)

Need for projected life tables when living benefits are concerned (in
particular benefits provided by health insurance products)

Whatever life table is used, future trend is random ⇒ risk of
systematic deviations from expected values
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Sickness insurance and longevity risk (cont’d)

Mortality trends at old ages (e.g. beyond age 65)

(a) decrease in annual probabilities of death

(b) increasing life expectancy

(c) absence of concentration of deaths around the mode of the curve
of deaths

(d) shift of the mode of the curve of deaths towards older ages
(expansion)

Because of (c) and (d), coexistence of

• random fluctuations around expected values (individual longevity
risk)

• systematic deviations from expected values (aggregate longevity
risk)
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Sickness insurance and longevity risk (cont’d)

0

1000

2000

3000

4000

5000

6000

65 70 75 80 85 90 95 100 105 110 115

age

dx

SIM 1881

SIM 1901

SIM 1931

SIM 1951

SIM 1961

SIM 1971

SIM 1981

SIM 1992

SIM 2002

Curves of deaths

 SIM 1881 SIM 1901 SIM 1931 SIM 1951 SIM 1961 SIM 1971 SIM 1981 SIM 1992 SIM 2002 

Me[T65] 74.45827  75.09749  76.55215  77.42349  78.21735  77.94686  78.27527  80.23987  82.20066  

x25[T65] 69.80944  70.45377  71.45070  72.16008  72.43802  72.32797  72.65518  73.89806  75.73235  

x75[T65] 79.95515  80.14873  81.80892  82.63073  83.86049  83.84586  83.96275  86.02055  87.83705  

IQR[T65] 10.14570  9.694965  10.35822  10.47065  11.42247  11.51789  11.30757  12.12249  12.10470  

 

Markers of T65
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Sickness insurance and longevity risk (cont’d)

In the context of living benefits, the possibility of facing the (aggregate)
longevity risk is strictly related to the type of benefits; in particular

• immediate post-retirement life annuity ⇒ single premium
⇒ high longevity risk borne by the annuity provider

• post-retirement sickness benefits ⇒ possible premium systems
including periodic premiums ⇒ lower longevity risk borne by the
insurer
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6.3 LOSS FUNCTIONS

Notation, definitions

• y = insured’s age at policy issue (= retirement age)

• N = random number of claims from the time of retirement on

• Ty = future lifetime of the insured

• Ky = curtate future lifetime of the insured

• Ch = random payment for the h-th claim

• Th = random time of payment of the h-th claim

Random present value of the payments of the insurer, Y , at the time of
retirement (time 0):

Y =
N∑

h=1

Ch vTh

where v = 1
1+i = discount factor, i = interest rate
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Loss functions (cont’d)

Random present value, Yk+1, at time k of payments in year (k + 1)-th:

Yk+1 =
∑

h:k≤Th<k+1

Ch vTh−k

Hence

Y =

Ky∑

k=0

Yk+1 vk

⇒ link between Y and Ky (or Ty) appears

Assume:

⊲ claims are uniformly distributed over each year

⊲ number of claims and claim costs are independent

⊲ claim costs are equally distributed
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Loss functions (cont’d)

Let

• φy+k = expected number of claims in year (k, k + 1)

• cy+k = expected payment for each claim in the same year

Under the assumptions, the expected present value at time k of
payments in year (k + 1)-th is:

E[Yk+1] = cy+k φy+k

or
E[Yk+1] = cy+k φy+k v1/2

The natural premium is of course

P
[N]
k = E[Yk+1]
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Loss functions (cont’d)

Loss function definition
Let X = random present value at time 0 of premiums

Loss function:
L = Y − X

or

L =

Ky∑

k=0

Yk+1 vk − X (∗)

Random items in (∗):

• future lifetime

• random number of claims

• costs of claims

In the following ⇒ main interest in consequences of the longevity risk
⇒ instead of (∗), we adopt the following definition:
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Loss functions (cont’d)

L =

Ky∑

k=0

E[Yk+1] v
k − X =

Ky∑

k=0

P
[N]
k vk − X

Mortality assumption

Assume for the random variable T0 the Weibull distribution, with
mortality intensity

µ(x) =
b

a

(x

a

)b−1

(a, b > 0)

Survival function:

S(x) = P[T0 > x] = e−(x/a)b

Density function (“curve of deaths"):

f0(x) = −dS(x)

dx
= S(x) µ(x) =

b

a

(x

a

)b−1

e−(x/a)b
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Loss functions (cont’d)

Mode (Lexis point):

ξ = a

(
b − 1

b

)1/b

Expected lifetime:

E[T0] = a Γ

(
1

b
+ 1

)

Variance:

Var[T0] = a2

(

Γ

(
2

b
+ 1

)

−
(

Γ

(
1

b
+ 1

))2
)

where Γ denotes the complete Gamma function

– p. 125/152



ep

6.4 PREMIUM SYSTEMS

Whatever the premium system, we adopt the equivalence principle, i.e.

E[L] = 0

hence
E[X ] = E[Y ]

Loss function depends on the premium system

• Single premium Π

L =

Ky∑

k=0

P
[N]
k vk − Π
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Premium systems (cont’d)

• Lifelong annual premiums, πk paid at time k (k = 0, 1, . . . ); we
have

X =

Ky∑

k=0

πk vk

and then

L =

Ky∑

k=0

(P
[N]
k − πk) vk

L =

Ky∑

k=0

P
[N]
k vk − Π

Premiums πk for k = 0, 1, . . . can be, for example
⊲ level premiums: πk = π

⊲ natural premiums: πk = P
[N]
k

⊲ . . .
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Premium systems (cont’d)

• Mixtures of up-front premium and annual premiums; then

X = Π +

Ky∑

k=0

πk vk

Let
Π = α E[Y ]; 0 ≤ α ≤ 1

Equivalence principle fulfilled if

Ky∑

k=0

πk vk = (1 − α) E[Y ]

We denote premiums with Π(α) and πk(α) for k = 0, 1, . . .
In particular:
⊲ α = 1 ⇒ single premium ⇒ Π(1) = Π

⊲ α = 0 ⇒ premiums πk(α), k = 0, 1, . . . ⇒ Π(0) = 0
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Premium systems (cont’d)

Loss function:

L(α) =

Ky∑

k=0

(

P
[N]
k − πk(α)

)

vk − Π(α)

Note that L(α) represents the loss function in the general case,
0 ≤ α ≤ 1
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6.5 THE PROCESS RISK

Portfolio valuations: moments of the loss function
For a given survival function S(x) and related probability of death q, the
expected value is:

E[L(α)|S] =

+∞∑

t=1

[

t−1|1qy

(
t−1∑

k=0

(

P
[N]
k − πk(α)

)

vk − Π(α)

)]

Note that, if S(x) is also adopted for premium calculation, the
equivalence principle implies

E[L(α)|S] = 0

Variance:

Var[L(α)|S] =

+∞∑

t=1




t−1|1qy

(
t−1∑

k=0

(

P
[N]
k − πk(α)

)

vk − Π(α)

)2


−E[L(α)|S]2
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The process risk (cont’d)

Let S′(x) = survival function used to calculate premiums (can in
particular coincide with S′(x))

Focus on two premium systems

• Upfront premium + annual premiums proportional to natural
premiums; α = quota pertaining to the upfront premium; then:

Π(α) = α E[Y |S′]

πk(α) = (1 − α) P
[N]
k ; k = 0, 1, . . .

Loss function:

L1(α) =

Ky∑

k=0

α P
[N]
k vk − Π(α)

and then:

L1(α) = α





Ky∑

k=0

P
[N]
k vk − E[Y |S′]




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The process risk (cont’d)

in particular we find:
Var[L1(α)] ∝ α2

Note that
⊲ the variance increases with α, i.e. with the amount of the

upfront premium
⊲ no upfront premium paid (α = 0) ⇒ Var[L1(0]|S) = 0

⇒ balance between expected costs and premiums in each
year and absence of mortality / longevity risk for the insurer

• Upfront premium + annual level premiums; then:

Π(α) = α E[Y |S′]

πk(α) = π(α); k = 0, 1, . . .

Loss function:

L2(α) =

Ky∑

k=0

(

P
[N]
k − π(α)

)

vk − Π(α)
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The process risk (cont’d)

Denote with π the annual premium corresponding to α = 0; then

π(α) = (1 − α) π

and hence

L2(α) =

Ky∑

k=0

(

P
[N]
k − π

)

vk − α



E(Y |S′) − π

Ky∑

k=0

vk





We find:

E[L2(α)|S] =

+∞∑

t=1

[

t−1|1qy

(
t−1∑

k=0

(

P
[N]
k − π

)

vk − α

(

E[Y |S′] − π

t−1∑

k=0

vk

))]
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The process risk (cont’d)

Var[L2(α)|S] =

=
+∞∑

t=1




t−1|1qy

(
t−1∑

k=0

(

P
[N]
k − π

)

vk − α

(

E(Y |S′) − π

t−1∑

k=0

vk

))2




−
(

+∞∑

t=1

[

t−1|1qy

(
t−1∑

k=0

(

P
[N]
k − π

)

vk − α

(

E(Y |S′) − π

t−1∑

k=0

vk

))])2
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The process risk (cont’d)

Moments of the loss function at portfolio level

Loss functions at portfolio level, for a portfolio of (initially) N risks:

Li(α) =
N∑

j=1

L
(j)
i (α); i = 1, 2

where L
(j)
i (α) denotes the loss function of the insured j

In a portfolio of N homogeneous and (conditionally) independent risks:

E[Li(α)|S] = N E[Li(α)|S]

Var[Li(α)|S] = N Var(Li(α)|S]
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The process risk (cont’d)

Portfolio valuations: riskiness and the portfolio size

Let Y = random present value of the benefits at portfolio level

Risk index (or coefficient of variation):

r =
σ[Y|S]

E[Y|S]

For a portfolio of homogeneous and independent risks:

E[Y|S] = N E[Y |S]

Var[Y|S] = N Var[Y |S]

Hence:

r =
1√
N

σ[Y |S]

E[Y |S]

⇒ riskiness decreases as the portfolio size increases
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The process risk (cont’d)

Examples

Mortality assumptions:

S[min](x), S[med](x), S[max](x)

(see the following table)

Assume:

• age at retirement y = 65

• expected number of claims in the year of age (x, x + 1)

φx = 0.1048 × 0.272859 × e0.029841 x

• expected cost per claim at age x, cx = c = 1

• rate of interest i = 0.03

• mortality assumption for premium calculation S′ = S[med]
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The process risk (cont’d)

S[min](x) S[med](x) S[max](x)

a 83.50 85.20 87.00

b 8.00 9.15 10.45

ξ 82.118 84.129 86.167

E[T0] 78.636 80.742 82.920

Var[T0] 136.120 111.560 91.577

Three projected survival functions

The following tables show:

⊲ variance of the individual loss function conditional on S[med]

⊲ riskiness for portfolio size N = 100 and N = 10 000
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The process risk (cont’d)

α Var[L1(α)|S] Var[L2(α)|S]

0.0 0.00000 0.14071

0.1 0.02757 0.23755

0.2 0.11029 0.37103

0.3 0.24816 0.54113

0.4 0.44118 0.74785

0.5 0.68935 0.99121

0.6 0.99266 1.27119

0.7 1.35112 1.58780

0.8 1.76473 1.94103

0.9 2.23348 2.33089

1.0 2.75738 2.75738

Variance of the loss function
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The process risk (cont’d)

N = 100 N = 10 000

E[Y|S] Var[Y|S] r =
σ[Y|S]

E[Y|S]
E[Y|S] Var[Y|S] r =

σ[Y|S]

E[Y|S]

S[min](x) 337.733 295.406 0.0509 33 773.325 29 540.593 0.0051

S[med](x) 357.715 275.738 0.0464 35 771.516 27 573.840 0.0046

S[max](x) 384.815 256.930 0.0417 38 481.540 25 692.981 0.0042

Riskiness for two portfolio sizes
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6.6 THE UNCERTAINTY RISK

Portfolio valuations: moments of the loss function

Assign the probabilities

ρ[min], ρ[med], ρ[max]

to the survival functions S[min](x), S[med](x), S[max](x) respectively

Unconditional expected value and variance of loss function

E[Li(α)] = Eρ[E[Li(α)|S)) = N Eρ[E[Li(α)|S]] = N E[Li(α)]; i = 1, 2

Var[Li(α)] = Eρ[Var[Li(α)|S)]] + Varρ[E[Li(α)|S]]

= N Eρ[Var[Li(α)|S]]
︸ ︷︷ ︸

random fluctuations

+ N2
Varρ[E[Li(α)|S]]

︸ ︷︷ ︸

systematic deviations

; i = 1, 2

– p. 141/152



ep

The uncertainty risk (cont’d)

If N = N̄ , with

N̄ =
Eρ[Var[Li(α)|S]]

Varρ[E[Li(α)|S]]
; i = 1, 2

the two terms of the variance are equal

Portfolio valuations: riskiness and the portfolio size

Risk index:

r =
σ[Y]

E[Y]
=








1

N

Eρ[Var[Y |S]]

E2[Y ]
︸ ︷︷ ︸

diversifiable

+
Varρ[E[Y |S]]

E2[Y ]
︸ ︷︷ ︸

non-diversifiable








1/2
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The uncertainty risk (cont’d)

Examples

Assume
ρ[min] = 0.2, ρ[med] = 0.6, ρ[max] = 0.2

Other data as in the previous example

The following tables show:

⊲ Expected value, variance and relevant components, in the case of
premiums proportional to annual expected costs

⊲ Expected value, variance and relevant components, in the case of
level premiums

⊲ Expected value, variance and risk index as functions of the
portfolio size
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The uncertainty risk (cont’d)

α E[L1(α)] Var[L1(α)] Eρ

[

Var[L1(α)|S]
]

Varρ

[

E[L1(α)|S]
]

N̄

0.0 0.000 0.000 0.000 0.000 –
0.1 14.237 22 747.223 275.910 22 471.313 122.783

0.2 28.473 90 988.893 1 103.641 89 885.252 122.783

0.3 42.710 204 725.009 2 483.192 202 241.817 122.783

0.4 56.947 363 955.571 4 414.563 359 541.008 122.783

0.5 71.183 568 680.580 6 897.755 561 782.826 122.783

0.6 85.420 818 900.036 9 932.767 808 967.269 122.783

0.7 99.657 1 114 613.938 13 519.599 1 101 094.338 122.783

0.8 113.893 1 455 822.286 17 658.252 1 438 164.034 122.783

0.9 128.130 1 842 525.081 22 348.725 1 820 176.355 122.783

1.0 142.367 2 274 722.322 27 591.019 2 247 131.303 122.783

Expected value, variance and relevant components

(premiums proportional to annual expected costs)
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The uncertainty risk (cont’d)

α E[L2(α)] Var[L2(α)] Eρ

[

Var[L2(α)|S]
]

Varρ

[

E[L2(α)|S]
]

N̄

0.0 42.365 54 388.611 1 430.150 52 958.461 270.051

0.1 52.365 129 488.780 2 407.495 127 081.285 189.445

0.2 62.365 237 240.772 3 749.004 233 491.767 160.563

0.3 72.365 377 644.586 5 454.679 372 189.907 146.556

0.4 82.366 550 700.223 7 524.518 543 175.704 138.528

0.5 92.366 756 407.682 9 958.523 746 449.160 133.412

0.6 102.366 994 766.965 12 756.692 982 010.273 129.904

0.7 112.366 1 265 778.070 15 919.026 1 249 859.044 127.367

0.8 122.366 1 569 440.998 19 445.525 1 549 995.472 125.455

0.9 132.366 1 905 755.748 23 336.190 1 882 419.559 123.969

1.0 142.367 2 274 722.322 27 591.019 2 247 131.303 122.783

Expected value, variance and relevant components (level premiums)
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The uncertainty risk (cont’d)

N E[Y] Var[Y] Eρ

[

Var[Y|S]
]

Varρ

[

E[Y|S]
]

r =
σ[Y]

E[Y]

100 359.139 500.623 275.910 224.713 0.062

200 718.278 1 450.673 551.820 898.853 0.053

1 000 3 591.388 25 230.415 2 759.102 22 471.313 0.044

10 000 35 913.882 2 274 722.322 27 591.019 2 247 131.303 0.042

∞ ∞ ∞ ∞ ∞ 0.042

Expected value, variance and risk index as functions of the portfolio size
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6.7 PREMIUM LOADINGS

Premium loading and loss function

From previous Section: arrangements where annual premiums are
proportional to annual expected costs are less risky than systems with
level annual premiums

However, level premiums may be preferred

In order to design appealing premium systems, but aiming at limiting
risk ⇒ level premiums charged with an appropriate safety loading

Let π(α; λ) = charged premium

Assume a proportional loading:

π(α; λ) = (1 + λ) π(α)

For this premium arrangement:

• L3(α) = individual loss function

• L3(α) = portfolio loss function
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Premium loadings (cont’d)

L3(α) =

Ky∑

k=0

(

P
[N]
k − π(α; λ)

)

vk − Π(α)

L3(α) =

N∑

j=1

L
(j)
3 (α)

Reasonable aims:

Var(L3(α)) = Var(L1(α)) (∗)

Var(L3(α)) = Var(L1(α)) (∗∗)

where L1(α), L1(α) relate to annual premiums proportional to natural
premiums

Equations (∗), (∗∗) ⇒ charge premiums so that the variance of the
loss function is the lowest within the probabilistic structure adopted, for
a given upfront premium
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Premium loadings (cont’d)

Process risk

Given the link between the variance of the loss function at individual
and portfolio level, loadings resulting from requirements (∗) and (∗∗)
coincide ⇒ focus on the individual case only

It can be proved that, because of the expression of Var(L3(α)|S),
Eq. (∗) has the structure

A λ2 + B λ + C = 0

In the following table:

⊲ S[med] has been adopted

⊲ when no real solution for equation (∗) exists, λ has been set equal
to the minimum point λ∗ of the function

f(λ) = A λ2 + B λ + C

⊲ when the equation is possible, the lower solution has been chosen
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Premium loadings (cont’d)

α λ λ∗

0.0 0.2144 0.2144

0.1 0.3493 0.3493

0.2 0.3038 0.5180

0.3 0.2727 0.7349

0.4 0.2602 1.0240

0.5 0.2531 1.4288

0.6 0.2486 2.0360

0.7 0.2454 3.0480

0.8 0.2431 5.0721

0.9 0.2413 11.1441

1.0 0.0000 –

Solutions of the loading equation (process risk only)
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Premium loadings (cont’d)

Uncertainty risk

Eq. (∗∗) must be used

Loading parameter λ depends on the size N of the portfolio

It can be proved that, because of the expression of Var(L3(α)),
Eq. (∗∗) has the structure

A(N) λ2 + B(N) λ + C(N) = 0

Coefficients A(N), B(N), C(N) are second order polynomials with
respect to N

In the following table:

⊲ when no real solution for equation (∗∗) exists, λ has been set
equal to the minimum point λ∗ of the function

g(λ, N) = A(N) λ2 + B(N) λ + C(N)

⊲ when the equation is possible, the lower solution has been chosen
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Premium loadings (cont’d)

As N increases ⇒ random fluctuation component tends to vanish
⇒ the required premium loading decreases and has a positive limit

N = 1 N = 100 N = 1 000 N = 10 000 N = 100 000

α λ λ∗ λ λ∗ λ λ∗ λ λ∗ λ λ∗

0.0 0.2157 0.2157 0.1989 0.1989 0.1833 0.1833 0.1800 0.1800 0.1796 0.1796

0.1 0.3508 0.3508 0.3321 0.3321 0.2027 0.3147 0.1844 0.3111 0.1824 0.3107

0.2 0.3085 0.5196 0.2470 0.4986 0.1933 0.4791 0.1823 0.4750 0.1811 0.4745

0.3 0.2764 0.7367 0.2321 0.7127 0.1905 0.6904 0.1817 0.6857 0.1807 0.6852

0.4 0.2635 1.0261 0.2254 0.9982 0.1891 0.9721 0.1814 0.9666 0.1805 0.9660

0.5 0.2564 1.4314 0.2216 1.3978 0.1883 1.3665 0.1812 1.3600 0.1804 1.3592

0.6 0.2517 2.0392 0.2191 1.9973 0.1877 1.9582 0.1810 1.9499 0.1803 1.9490

0.7 0.2485 3.0523 0.2173 2.9964 0.1874 2.9442 0.1809 2.9333 0.1802 2.9320

0.8 0.2461 5.0784 0.2160 4.9946 0.1871 4.9164 0.1809 4.8999 0.1802 4.8981

0.9 0.2443 11.1570 0.2149 10.9890 0.1868 10.8330 0.1808 10.7998 0.1801 10.7961

1.0 0.0000 – 0.0000 – 0.0000 – 0.0000 – 0.0000 –

Solutions of the loading equation (process risk & uncertainty risk)
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