#### XIV GENERAL INSURANCE SEMINAR

# Capital Adequacy and Dependence

**David Isaacs** 

# Different Dependencies

- Linear correlation is not always an appropriate measure of dependence
- Equally correlated bivariates are not necessarily the same



### Introduction

- Impact of dependency structures on capital adequacy
- A practical guide rather than a technical treatise
- Important for:
  - APRA Internal Models
  - Determination of internal risk appetites



Institute of Actuaries of Austra

# Copulas and DFA

- Copulas allow DFA practitioners to choose the shape and the strength of the relationships
- One useful copula that allows dependence in the right hand tail is the Gumbel



À

Institute of Actuaries of Australia

#### **APRA Internal Models**

- APRA Guidance Note GGN 110.2 sets out clear guidelines for the:
  - Evaluation of the interrelationships between risks
  - Stress testing key parameters including the interrelationships

### A Worked Example

- Company in start up
- 1% market share in all 8 classes
- Working Losses modelled using Lognormal distribution
- Very low retention on cats
- \$75m starting capital

# A Worked Example

- Mythical Insurer writing 8 classes
  - Liability
  - NSW CTP
  - Workers' Compensation
  - Professional Indemnity
  - Commercial Property
  - Commercial Motor
  - Domestic Property
  - Domestic Motor



A

Institute of Actuaries of A

# Fitting a Gumbel

- There are three key steps:
  - Assess pair-wise best fits
  - Overcome issues with multi-dimensionality
  - Determine an appropriate relational structure



Institute of Actuaries of Au

#### **Pair-Wise Best Fits**

 Different approaches to determining best fits

A

Institute of Actuaries of Australia

- Judgemental
- Statistical
  - Kendall's Tau
  - Chi-Squared Tests

# Pair-Wise Best Fits

Determining the chi-squared statistic helps
predict actual versus expected



## Pair-Wise Best Fits

Judgemental approach incorporates prior views

|                | Workers   |          |         | Prof      | Comm     | Comm           | Dom          |
|----------------|-----------|----------|---------|-----------|----------|----------------|--------------|
|                | Liability | Comp     | CTP     | Indemnity | Property | Motor          | Property     |
| Liability      |           |          |         |           |          |                |              |
| Workers Comp   | Med-High  |          |         |           |          |                |              |
| CTP            | Med-High  | Med-High |         |           |          |                |              |
| Prof Indemnity | High      | Med-High | Med     |           |          |                |              |
| Comm Property  | Low-Med   | Low      | Low     | Low       |          |                |              |
| Comm Motor     | Low       | Low      | Low-Med | Low       | Low-Med  |                |              |
| Dom Property   | Low       | Low      | Low     | Low       | Low-Med  | Low-Med        |              |
| Dom Motor      | Low       | Low      | Low-Med | Low       | Low-Med  | Low-Med        | Low-Med      |
|                |           |          |         |           |          |                | ▲            |
|                |           |          |         |           |          | 4              | $\Sigma$     |
|                |           |          |         |           | , In     | stitute of Act | uaries of Au |

|                | Linkiliku | Workers | OTD   | Prof      | Comm     | Comm    | Dom     |
|----------------|-----------|---------|-------|-----------|----------|---------|---------|
| Liability      | Liability | Comp    |       | Indemnity | Ргорепту | IVIOTOF | Ргорепу |
| Workers Comp   | 1 50      |         |       |           |          |         |         |
| CTP            | 1.30      | 1.25    |       |           |          |         |         |
| Prof Indemnity | 1.50      | 1.50    | 1.25  |           |          |         |         |
| Comm Property  | 1.025     | 1.025   | 1.025 | 1.025     |          |         |         |
| Comm Motor     | 1.025     | 1.025   | 1.15  | 1.025     | 1.05     |         |         |
| Dom Property   | 1.025     | 1.025   | 1.025 | 1.025     | 1.10     | 1.05    |         |
| Dom Motor      | 1.025     | 1.025   | 1.15  | 1.025     | 1.05     | 1.15    | 1.10    |
|                |           |         |       |           |          |         |         |

#### Multi-Dimensionality

- Gumbel allows only (n-1) parameters to describe n(n-1)/2 pair-wise relationships
- Does not handle negative dependence
- Can be overcome by reasonable choice of relational structure

Institute of Actuaries of Au

A

Institute of Act

# The Relational Structure

Represents the explicit dependencies
 modelled



### **The Relational Structure**

- Can choose which pair-wise relationships are to be modelled explicitly. Based on:
  - Which classes have the strongest pair-wise relationships?
  - What are the largest classes for the insurer?
  - Is there a reasonable justification for "linking" two classes?









# Conclusions

- Only allowing for linear correlation can seriously underestimate the probability of failure
- Choice of dependency crucial to the conclusions drawn from DFA models
- Parameter error in dependency structures can be significant

Institute of Actuaries