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1. Introduction 

 
Actuarial assessment of Insurance Liabilities involves a combination of model fitting and 
judgement.  On occasion, the actuary’s aim may simply be to identify a model that fits past 
experience well, and then to use it to infer properties of projected claims run-off.  However, the 
task is generally less straightforward.  For a variety of reasons, claim development patterns may 
not be stable over time.  A wide range of items that are subject to change can influence them.  
Some examples include: 
 
• Business mix 

• Exposure 

• Policy conditions 

• Legislative change 

• Propensity to claim 

• Claims management  

• Judicial change 

• Price change 

• Technological change 

• Insurer staff turnover of key personnel 

• Change in reinsurance arrangements 
 
Actuaries performing Insurance Liability assessments must form a view about the extent to which 
such changes have occurred in the past, what their effect has been (and will be) on claims run-off, 
and whether further changes are possible through the run-off period.   
 
Even where none of these influences can be identified as playing a role, it is not uncommon to see 
judgement made that past experience is unrepresentative of likely future experience.  This can be 
due to items such as: 
 
• Presence or absence of catastrophe events 

• Presence or absence of large claims 

• Presence of unusually high or low superimposed inflation 
 
An example of this sort of judgement relates to the removal of ‘outliers’ from the claims history to 
prevent them from exerting ‘undue influence’ on the valuation result.  Distinguishing outliers 
worthy of this treatment, from genuine features of claims experience that capture information 
about likely future experience, is one of the more important assessments associated with Insurance 
Liability estimation. 
 
Another judgement area relates to fitting a tail to the run-off when there is an insufficient history to 
base projections on experience. 
 



 
 

3

 
Actuaries often form their view of likely future experience with input from the insurers’ 
underwriters, claims managers and senior management.  Valuable insights concerning likely claim 
cost progression can be gained from these sources.  However, there can be a danger associated 
with putting weight on advice that lowers the Insurance Liability estimate if the advice can’t be 
objectively verified, particularly if it comes from those with a vested interest in the result.   
 
Notwithstanding that it is the actuary who is responsible for the Insurance Liability estimate, it is 
not uncommon for projection assumptions to be influenced by views sourced from others.  The 
extent to which the Insurance Liability estimate incorporates these qualitative influences can 
depend on: 
 
• The vigour with which the sources make their point of view. 

• The readiness or otherwise of the actuary to incorporate them in their estimate.  

• The strength and quality of the line of reasoning. 

• The ability of the actuary to verify the qualitative advice. 

• The track record of other qualitative advice from similar sources. 
 
It is quite proper that the Approved Actuary absorbs and assesses qualitative advice, determines 
whether environmental or other changes can be identified which will impact run-off patterns, and 
forms a view about whether past experience is representative of likely future experience.  The 
alternative of mechanically projecting current run-off based on past patterns will rarely produce a 
better result.   
 
In addition to quantitative analysis, actuarial judgement forms a vital component of Insurance 
Liability assessment.  This paper explores some of the implications of the judgement application to 
the assessment of: 
 
• Central estimates: 

• Risk margins, and 

• Diversification benefits.   
 
Application of judgement can increase the risk of inadvertently introducing bias into the central 
estimate assessment, it can contribute to violation of assumptions that underlie quantitative 
techniques used to assess risk margins, and it can affect correlation between adequacy of central 
estimates across business classes.  These effects are important, and need to be considered as part of 
Insurance Liability assessment. 
 
Risk margins provide protection against variation in actual claims outcomes away from the central 
estimate.  The sources of this variation can be categorised as those relating to: 
 
• Intrinsic variability about the ‘true’ mean   (process variability); and 

• Risk that our central estimate may be different from the true mean (estimation error). 
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One reason the second component arises, is that claims history can be considered as a set of 
observations that is a random sample from of an underlying distribution.  Sampling error means 
that claim projection parameters based on the historical observations, will be different from the 
true value.  In Section 2, I aim to illustrate that the skewed nature of claims cost distributions mean 
that it is more likely that claim projection parameters will be understated than overstated if based 
on a historical average.    
 
A second reason why estimation error arises is that it is introduced by real and/or assessed 
changes in portfolio conditions necessitating the application of judgement.  This is discussed in 
Section 3, where I describe some of the forms this risk can take.  Many of the forms have impact 
that does not decrease in relative size as portfolio size increases.  By definition, they are therefore 
systemic.  In Section 4, I argue that they can be a significant source of correlation between 
adequacy of insurance liability estimates, and that they therefore act to reduce diversification 
benefits. 
 
Reserving judgement is a common feature of central estimate assessment.  Further, just as 
mechanical application of an actuarial method to assess central estimates will rarely produce the 
most suitable result, so too mechanical application of various methodologies and formulae to 
arrive at risk margin and diversification benefit allowances will rarely provide a good result.  
Judgement is just as important an element of risk margin and diversification assessment as it is for 
the central estimate.   
 
In Section 3, I explore of some quantitative risk margin assessment methods; noting sources of 
claim outcome variability from the central estimate that they do and do not capture, and some of 
the problems that result when the methods are used even though the assumptions that they rely 
aren’t satisfied. 
 
In Section 4, I explore issues pertinent to correlation and diversification benefit assessment, and 
include observations on the results set out in the Bateup & Reed and Collings & White papers.  
 
This paper does not provide the answer to how Insurance Liabilities can be objectively assessed in 
practice.  In my view judgement remains a valuable component that should add reliability to the 
result.  There seem to be features of general insurance liabilities and assessment methods that 
increase risk of understatement of central estimates and risk margins and risk overstatement of 
diversification benefits.  An aim of this paper is to draw attention to these effects.  Being aware of 
them is an important step toward limiting the likelihood of them leading to Insurance Liability 
mis-statement.  
 
For the majority of this paper, my discussion more directly relates to Outstanding Claims 
Liabilities than Premium Liabilities, though much of what is said is applicable to both.  I have also 
largely ignored what might be called the ‘half coefficient of variation rule’.  This requires those 
companies where the Approved Actuary judges the distribution of possible claims outcomes to be 
particularly variable and skew to maintain their reserves at a level targeting a higher probability of 
adequacy than the 75% level that generally applies. 
 
Insurance Liability assessment under GPS210 is a complex topic.  Through this paper, I hope to 
contribute to the development of actuarial understanding and practice in this important area by 
drawing attention to considerations that in my view are important, but haven’t been widely 
discussed in the literature on the topic to date.  
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2 The Central Estimate 

 
2.1 The Central Estimate as the Mean 

 
Prior to GPS210, a range of interpretations of the term ‘central estimate’ was possible.  Both 
GPS210 and PS300 now define it more precisely as the expected value of the liabilities.  For this 
purpose, expected value is defined as the statistical mean (ie if our assessment of all the possible 
values of the liability that could be realised is expressed as a statistical distribution, the central 
estimate is the mean of that distribution).  
 
For most insurance classes, this probabilistic distribution is generally accepted to be right-skewed.  
If outcomes are better than anticipated, there is generally less scope for them to be much better 
than anticipated than there is for the outcomes to be much more adverse.  
 
The definition of the central estimate carries several implications that create practical difficulties 
for the Approved Actuary: 
 
• For typical long-tail claims outcome distributions, the APRA central estimate definition 

will sit significantly higher than the most likely outcome.  Where the valuation is 
conducted outside of a statistical framework, there is natural tendency to set projection 
assumptions toward the most likely outcome. This can give rise to a risk of central estimate 
understatement.  Where the tendency is resisted, communication issues can arise since 
projection assumptions that target a mean can look conservative to those who don’t fully 
appreciate properties of skewed distributions, or the nature of APRA’s central estimate 
definition.  

• In contrast to other measures of centrality such as the median or the mode, assessment of 
the mean requires (implicit or explicit) formation of a view about the entire probabilistic 
distribution of possible outcomes.  This is a result of the skewed nature of claims cost 
outcome distributions.  In particular, the small possibility that outcomes could be highly 
adverse needs to be taken into account.   Outcomes over, say the 95th or 98th percentile, 
have the potential to significantly influence the position of the mean, but the actuary will 
almost certainly be in a position where the allowance must be subjective.   

• A number of scenarios may require assessment to properly reflect the mean of the assessed 
distribution of outcomes.  For example, at the time of writing, amendments are under 
consideration that would, with retrospective effect, improve benefits for injured workers 
under the statutory workers’ compensation scheme in Western Australia.  Subject to 
materiality considerations, a full assessment of the central estimate under the GPS 210 and 
PS 300 definition would seem to require the Actuary to form a view regarding: 

- The likelihood of the amendments being passed (in full or altered form), and 

- The implications under each scenario for the distribution of possible claims 
outcomes. 
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• The mean is an arithmetic concept, rather than one that carries obvious physical meaning 
readily grasped by all.  By contrast, median (being the amount equally likely to be too great 
or too small to cover the liability that ultimately emerges) is more readily understood.  
Communication of the meaning of the term ‘central estimate’ can be difficult.  

• In selecting projection assumptions, it will more often than not be the case that projection 
assumptions estimating the mean will need to be above the average of past experience.  
This is because the mean of a small sample from a right-skewed distribution is more likely 
than not to be below the mean of the underlying distribution. 

If the central estimate represents a mean then, because the distribution of possible claims cost 
outcomes is right skewed, when successive actuarial valuations are compared, ‘prior year releases’ 
should be more common than ‘prior year strengthenings.’  Despite the theoretical position, I tend 
to come across more strengthenings than releases in my audit support role. 

2.2 Random Samples from Skewed Distributions and Removal of Outliers 
The point that, more often than not, it will be the case that projection assumptions estimating the 
mean will need to be above the average of past experience, can also be worth bearing in mind 
when performing a comparison of actual versus expected experience over short periods, or for 
particular development periods, where outcomes can be considered as random drawings from a 
skewed distribution. 
 
One should expect (colloquial meaning) actual outcomes to be below expected (statistical 
meaning).  This may seem a pedantic point, but in my view it is worth having as part of one’s 
mindset to protect against the natural tendency in a non-statistical analysis to select assumptions 
that reflect the most likely outcome. Our statutory obligations require us to target a mean.   
 
The following example provides an illustration. 
 
The table below lists 10 simulations of five observations of a lognormal distribution with mean 
8,000, and standard deviation 6,400.  The mean of the 5 observations from each simulation is 
shown in the row named ‘Avg’.   
 
It can be instructive to put oneself in the position of an actuary looking at these as, say, a recent 
history of PPCI values for a given development period, and seeking to arrive at a projection 
assumption.  I have marked in bold red those observations that I, and I suspect other actuaries, 
might be tempted to regard as ‘outliers’ that should be removed from the analysis so as not exert 
‘undue influence’.  The row labelled ‘Avg*’ is the mean of the observations for each simulation 
after exclusion of the ‘outliers’. 

Simulated Values from Lognormal  
Mean = 8,000    Standard Deviation 6,400 

 Sim 01 Sim 02 Sim 03 Sim 04 Sim 05 Sim 06 Sim 07 Sim 08 Sim 09 Sim 10 
Obs1 6,349  13,232  5,018  3,440 3,065 4,769 8,826 28,840  15,021 6,553 
Obs2 4,126  4,446  1,994  3,484 9,378 6,750 3,573 8,214  16,060 20,893 
Obs3 3,771  6,069  9,819  7,739 3,769 3,875 7,633 2,851  2,215 7,428 
Obs4 1,005  11,400  3,540  15,909 5,721 5,050 2,424 8,115  6,242 8,523 
Obs5 23,499  14,203  2,990  6,083 12,418 8,390 7,121 5,460  23,242 2,210 
           

Avg 7,750  9,870  4,672  7,331 6,870 5,767 5,915 10,696  12,556 9,121 
           

Avg* 3,813  9,870  4,672  5,187 6,870 5,767 5,915 6,160  12,556 6,179 

Mean of the Avg amounts = 8,055                  Mean of the Avg* amounts = 6,699 
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It is possible to check that the 50 simulated observations are reasonably representative of the 
underlying distribution by means of a Q-Q plot.  This plot compares the quantile for each 
observation that reflects its rank in the fifty observation points, with its quantile position with 
respect to the particular lognormal distribution.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Because the points lie reasonably close to the y=x line in the Q-Q plot, it shows that the sample of 
fifty observations is not ‘unrepresentative’ of the underlying lognormal distribution.   
 
One might argue whether a ‘typical’ actuary presented with the history as shown would include or 
exclude the outliers, or treat them in some special manner.  The point of the illustration is not 
really affected by this.  Its aim is to illustrate: 
 
• It is more likely than not that the mean of a sample from a skewed distribution will 

understate the true mean of the underlying distribution.  (In six of the ten simulations 
shown, the average of the sample was less than 8,000 – over 25,000 simulations, the 
sample average was below 8,000 57.1% of the time)  

• Not adjusting assumptions to be heavier than recent experience, where there is an absence 
of outliers in the claims history, can inadvertently introduce bias.  (In the ten simulations 
shown; simulations 02, 03, 05, 06, 07, and 09 might be regarded as having no outliers.  In 
two-thirds of these cases, the sample mean is below the true mean) 

• One must be careful when deciding to exclude outliers, in the belief that they are 
unrepresentative, that inadvertent bias does not result. (The mean of the Avg* amounts is 
significantly lower than the true mean of the underlying distribution) 

 
Because actuaries deal with skewed distributions, it follows that if the environment is such that the 
underlying claims process is stable (but still subject to random fluctuation around the underlying 
stable process), a claim projection that is supposed to target the mean, that bases projection 
assumptions on an average of recent experience will more often than not underestimate it. 
 
Risk of bias increases if the actuary begins to judge that there are aberrant ‘large’ observations 
present in the claims history that are unlikely to be representative of future experience.  While 
there may be occasions when this is genuinely the case, if the claims process can be likened to 
drawing a random sample from a skewed distribution, it will be far more common that large 
observations will be under-represented.  Therefore, in targeting the central estimate, it should be 
more common to add a loading to the average of past, than to make adjustments to limit the 
influence of large ‘outliers.’ 
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2.3 Qualitative Advice  

 
Qualitative advice from insurance company claims, underwriting and management staff can also 
add to risk of central estimate understatement.  Except from actuarial peers, it is my impression 
that it is rare for the actuary to be cautioned by insurance company staff, that too little allowance 
has been incorporated in the estimates for tail development or large claims, or that development 
patterns will be longer than previously experienced.  The advice is almost always given to help the 
actuary understand why a lower Insurance Liability estimate is appropriate. 
 
Typically, a company will seek continuous improvement to its underwriting practices and claims 
management.  It is therefore quite natural that qualitative company advice will tend to paint the 
picture that future experience will be more favourable than the past.   
 
In assessing this advice, the actuary needs to recognise situations where it is provided by those 
with a vested interest in the result.  While one should not be dismissive of the advice in these 
cases, it is important that it be objectively verified before being given any weight.  The Insurance 
Liability estimate is the responsibility of the Approved Actuary, and the Approved Actuary alone. 
 
Risk of underestimation can be limited by: 

• Not giving weight to advice about changes in likely claims development patterns until they 
begin to be reflected in claims experience, or can be verified as likely in some objective 
way. 

• Ensuring that any qualitative advice is supported by verifiable examples before it is 
incorporated in estimates.  For instance, if a change in policy conditions is cited as a reason 
why claims experience will improve, the actuary can request examples of renewed policies 
where the change has occurred, and examples of claims that have occurred in the past that 
would be impacted by the change.  This is an important component of the general principle 
that actuaries should verify the data that inputs their Insurance Liability assessments.  

 
2.4 Data Verification 

 
Discussion about data verification falls outside the general theme and scope of this paper.   
However, because it is crucially important to the reliability of actuarial estimates, it is a related 
topic, and it is pertinent to make some observations regarding practice in this component of 
actuarial investigation. 
 
Veracity of data has a significant impact on the reliability of the actuary’s estimates.  The lower 
the level of data scrutiny, the greater the possibility that unidentified data issues will slip through 
and undermine the actuarial review. 
 
Codification of the actuary’s responsibilities regarding data verification can be found in PS300 
(covering all actuarial estimates of outstanding claims and premium liabilities for any entities 
involved in general insurance activities), GN353 (mandatory for valuations under the APRA 
prudential standard GPS210), and APRA’s guidance note GGN210.1 (indicating APRA’s intent 
with regard to requirements associated with the written advice that the Board of an Insurer must 
receive from the Approved Actuary on the valuation of its Insurance Liabilities in accordance with 
GPS 210). 
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Each contains statements about the responsibility an actuary has to verify their data.  Excerpts 
from each are set out below: 
 

PS 300  (Paragraph 22) 
It is the actuary’s responsibility to ensure that the data utilised are appropriate and sufficient for the valuation.  
The actuary should, where possible, take reasonable steps to verify the overall consistency of the valuation 
data with the insurer’s financial records. 

 
Guidance Note 353 (Paragraph 8) 
The actuary should take reasonable steps to verify the consistency, completeness and reliability of the data 
collated, against the company’s financial records.  The actuary should discuss the completeness, accuracy, 
and reliability of the data with the company’s auditor (refer to GN 551 ‘Actuaries and Auditors’).  The actuary 
should include in the written report on the valuation of the liabilities a description of the measures taken to 
investigate the validity of the data, and should outline the results of those data checks. 
 
GGN 210.11 (Paragraph 6) 
It is the role of the Approved Actuary to make it clear that he or she may require access to and information 
from, management, underwriters, other employees of the company and the company’s auditors.  Approved 
Actuaries must however, take full responsibility for their advice and reports and must therefore be satisfied as 
to the validity of the information provided to them or work undertaken for them. 

 
APRA’s guidance is clear and unequivocal about where responsibility for data validation lies.  By 
contrast, the Institute’s standards and guidance seem to be open to a wider range of interpretation, 
and uses less emphatic language.  In practice, considerable differences are encountered in the 
emphasis placed by actuaries on data validation. 
 
The Actuary is best placed to investigate data veracity (or more precisely – direct and assess it), 
knowing how the data will be used, in the valuation, and the implications that would follow if the 
data were incorrect. .  If the actuary does not ensure the necessary data checks are performed, 
properly interpret and explain the implications of the results of the checks, and explain the 
implications of any restrictions on data verification, it is most unlikely that anyone else will.   
 
Notwithstanding the importance of data verification, and the requirements of the relevant standards 
and guidance notes, it is not uncommon to see actuarial Insurance Liability reports routinely 
including paragraphs along the following lines, with no accompanying contextual explanation:  
 
1. We have relied on information provided by Insurance Company XYZ.  While independent verification 

was not undertaken, we have checked the information for reasonableness and consistency.  Reliance 
was placed on, but not limited to the accuracy of this information.  The reader of this report is relying 
on Insurance Company XYZ, not <Approved Actuary’s name, or the firm they work for> for the 
accuracy and reliability of the data. 

or 

2. In developing this Report Consulting Firm X has relied upon historical data and other quantitative and 
qualitative information supplied by Insurance Company XYZ without audit or independent verification.  
We have however reviewed this information for reasonableness and consistency.  The accuracy of our 
results is dependent on the accuracy and completeness of these underlying data.  Therefore any material 
discrepancies discovered in this data by Insurance Company XYZ should be reported to us and the 
report amended accordingly. 

 

                                                 
1APRA’s intention stated in the introduction to GGN210.1 was that it would be replaced by the standards of the IAAust as they 
were developed, but at the time of writing this paper GGN 210.1 is still found on APRA’s website, and it has not been repealed.  
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The actuary’s responsibility with respect to data veracity should be considered in light of how it 
contributes to the objectives and requirements of GPS 210.  Describing these, GPS 210 states: 
 

“The Board of an insurer that is required to have an Approved Actuary must obtain written advice from 
the Approved Actuary on the valuation of its insurance liabilities.  The requirement is designed to aid 
Boards to perform their duties by ensuring they are adequately informed.” 

 
It is difficult to accept that the objectives of GPS 210 are met if the Board is presented with a 
report containing a set of disclaimers, unaccompanied by a proper explanation, stating that data 
has not been verified as accurate and complete, and that inaccurate or incomplete data could render 
the Insurance Liability assessment unreliable.   
 
There will unavoidably be some reliance on the Insurance Company for data veracity for non-
financial fields (such as date claim finalised) since a census check of the field is never feasible.  It 
should nonetheless be possible to provide a good explanation of the checks that have been done to 
establish enough confidence in the field to support its use, the results of those checks, and what has 
not been checked (and why).  My interpretation of GN353 is that, for GPS 210 assessments, it is 
mandatory that data verification is the subject of a significant degree of effort that is documented 
in the report.  However, iIn practice there seems to be a wide range of interpretation of the degree 
of rigour required of both the data checks and their documentation. 
 
An important component of data verification is to tie the financial aspects of the data back to the 
General Ledger.  It may not necessarily be the Approved Actuary who performs this check, but it 
is their responsibility to see that it is done, and to review the results of that check.  This is because, 
regardless of the requirements of the professional standards and guidance notes, it is the Insurance 
Liability assessment for which the actuary is responsible, that risks being affected by unidentified 
data problems. 
 
It should take little effort to include a table of numbers in the valuation report, disclosing the result 
of the reconciliation of valuation data to the General Ledger.  This is more complete disclosure of 
the reconciliation result than a generic materiality statement.   
 
A common problem for the actuary is that, in order to adhere to profit reporting timeframes, data 
will be extracted with an effective date prior to the effective date at which ledger figures are 
audited.  In such instances, it should still be possible to check the actuarial data against a ledger 
running total.   
 
It should also be possible to re-extract the actuarial data at the effective audit date, and in a form 
that allows the original extract to be recreated.  Most actuaries would then: 
 
• Check that the original actuarial data is consistent with the re-extract taken at the effective 

audit date. 

• For financial fields, investigate whether the actuarial data is consistent with the 
corresponding audited ledger fields.  This includes gross fields, and those relating to 
reinsurance and other recoveries. 
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• Investigate what manual adjustments will be made to the ledger to arrive at figures for the 
financial statements, and determine whether these should impact the actuarial valuation. 
Examples might include: 

- Reversal of known claims processing errors 
- Transactions associated with reinsurance arrangements that cannot be fully 

automated in the products system; such as aggregate covers, stability clauses, and 
facultative arrangements 

- Unclosed business estimates 
 
It should not be taken for granted that system calculations will always be correct.  Where a system 
calculation inputs the General Ledger, and also the actuarial data, verifying that they are consistent 
will not constitute a full check of the field.  For example, earned and unearned premium are 
worthy of independent checks, particularly if there are policies with atypical features such as non-
annual policy periods, or premium payment by instalment is possible.   
 
Actuarial analysis of Insurance Liabilities typically relies on a wide range of non-financial fields 
that are not subject to external audit (but may be subject to internal audit controls).  These fields 
must generally be verified outside of the external audit framework.  Common examples include: 
 
• Accident date 

• Date of claim report 

• Date of claim finalisation 

• Claim status 

• Portfolio subdivisions such as policy type that are at a finer level of granularity than is 
identifiable in the General Ledger. 

• Payment-type codes 

• Claim-type codes (such as material damage or personal injury in a public liability portfolio) 
 
Understanding and checking such fields requires that the actuarial data be at a detailed claim-by-
claim level.  A census check of all the data will never be feasible, but it ought to be possible to 
walk through examples of claims with a claims staff member (sometimes a processor can be better 
than someone in a more supervisory or managerial role) to check your interpretation of the data.  It 
is possible to do this by comparing the actuarial data with information that claims staff can read 
from claim system screens, but at times it can be worthwhile going the further step of checking 
interpretation against the physical claims file.  
 
Such checks might reveal features such as: 
 
• Payment-type codes not having the veracity you thought. 

• Claims that reopen, having the original finalisation date wiped (this can mean retrospective 
changes to claim finalisation triangles that will impact valuation methods such as PPCF) 

• Activities associated with claims handling that do not get captured on the claims system 

• Portfolio segments administered differently to the general body of claims 
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• The meaning of claim counts (for example a single event giving rise to say, a claim against 
a building and a contents policy might be recorded under a single claim number, and not be 
captured as in the claim count for both the buildings and the contents valuation data) 

• How errors are corrected 

• Changes to claims administration processes 

• Treatment of bulk policy and claims items; and the meaning of various fields in them (for 
instance, the date coded in the field ‘accident date’ may not carry its normal meaning)  

 
It is important that such checks are repeated at intervals.  Ideally this should be at each Insurance 
Liability review. 
 
It can be worthwhile reviewing the most recent external audit closing report and management 
letter as part of the process of determining whether there are data veracity or control issues that 
may impact the Insurance Liability estimates.  Similarly, the Approved Actuary should review 
relevant internal audit and technical audit reports which may have considered transactional 
processing issues, and the reliability of information contained in the product system. 
 
Where a change to business processes could have the potential to impact the valuation, it is 
important to check whether any have occurred.  Among other things, this can include matters such 
as how claims with little supporting information are recorded (where case reserves will be 
notional), when claims are regarded as finalised, and how case reserves are set.  Turnover in key 
staff commonly precipitates such changes.   
 
One specific item that can be worthwhile checking is whether any bordereaux are present in the 
claims and policy data.  These arrangements are often processed under a single claim or policy 
number, but as there are many underlying claims and policies underlying a bordereau they will 
typically require special treatment. 
 
Understanding the treatment of AASB1023 accounts where companies might argue that elements 
of the Standard are open to interpretation can also be important if an affected item impacts the 
Insurance Liability valuation.   
 
In summary, to meet the aims and objectives of GPS 210, the Approved Actuary needs to conduct 
sufficient investigation to justify their reliance on each field used in the valuation, and to verify 
that fields carry the meaning attributed to them.  This applies to all fields including financial and 
non-financial items.  
 
The potential impact of unidentified data problems or misinterpretation does not diminish with 
increasing portfolio size. Risk associated with unidentified data problems and mis-interpretation is 
therefore systemic. 
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2.5 Judgement  

 
Generally, reliable estimates of Insurance Liabilities rely to some degree on stability in past claim 
trends to project future claims outcomes.  This allows patterns observed in well-developed 
accident years to be used as a basis to estimate the run-of of payments relating to more recent 
accidents. 
 
Because so many aspects of the environment that affects claim cost development and run-off are 
subject to change over time, it is the rule rather than the exception that judgement is required to 
allow for anticipated changes that might follow changes to claims management, underwriting, 
business mix and the external environment.  
 
Where judgement impacts are material, it is important that the possibility the judgement could turn 
out to be erroneous is taken into account.  It is appropriate to consider what the impact on the risk 
margin should be, if the central estimate gives heavy weight to judgement that run-off will be more 
favourable than is evidenced by the history.  The risk margin and the central estimate should not 
be regarded as independent of one another.  This is because, the purpose of the risk margin is to 
add to the central estimate, with the aim of arriving at an amount that provides a 75% likelihood of 
covering the claims cost that arise.  As the interest is in the total quantity, Central Estimate + Risk 
Margin, more so than its components it follows that there should be some interaction between the 
positions taken with respect to each. 
 
Application of judgement introduces scope for inadvertent bias in the sense that claims process 
variability will occur centralised around some number other than your central estimate.  The risk is 
unavoidable, and needs to be recognised when considering risk margins.  Similarly, if there is 
consistent application of judgement across a number of classes, implications for correlation 
between adequacy of the liability estimates across the classes also needs to be considered.  These 
items are discussed through the remainder of the paper. 
 
Sometimes, the point is made that judgement reduces variability in how outcomes will differ from 
central estimates, compared with how this difference would track if judgement were not applied.  I 
would agree that this should be the case, otherwise it would follow that judgement was detracting 
from the claims estimation exercise.  However, I would also comment that an identified need to 
exercise judgement is an acknowledgement that there are ‘un-modelled’ sources of variation.  It 
should therefore follow, that when one’s attention turns to risk margins, the risk that claims 
outcomes are subject to un-modelled sources of variability is taken into account.
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3 Stand - Alone Risk Margins 

 
 

3.1 Order of Determination 
 
The next step taken by most actuaries after central estimate assessment is assessment of the risk 
margin required to take the overall estimate to a 75% likelihood of adequacy. 
 
I expect statisticians would be bemused by this order of determination, since risk margin 
assessment involves estimating where a single percentile in the distribution lies.  The mean on the 
other hand is a weighted average of all percentiles.  It seems to make sense that the 75th percentile 
ought to (implicitly or explicitly) be an input to the central estimate determination2.  Nonetheless, 
it is currently standard actuarial practice is to assess risk margins based on analysis that is 
conducted after a central estimate has been determined. 
 
The order of determination could be an indication that, in practice, the central estimate is 
sometimes set based on what seems to be a reasonable scenario, a scenario representing a median 
outcome, or possibly even a mode.  If so, this would be a problem, since, for general insurance 
liabilities, likely outcomes and the median would be lower than the mean of the full probabilistic 
distribution, due to its skewed nature. 
 

3.2 Risk Margin Components – Process Variability and Estimation Error 
 
It can be useful to think of the risk margin as providing protection against two components of 
variability in outcomes compared to the central estimate. 
 
1. Risk that our central estimate may not be accurate3 (referred to here as ‘estimation error’) 

2. Intrinsic variability around the ‘true’ mean (referred to here as ‘process variability’) 
 
At the time of writing, paragraph 22 of GPS 210 states that “the risk margin is the component of 
the value of the Insurance Liabilities that relates to inherent uncertainty in the central estimate.”  
This statement directly acknowledges the first source of variability, but even if we were 100% 
confident that we had ‘correctly’ determined the central estimate, a risk margin would be required 
to protect against the process variability around it.  In order to arrive at an assessment of the 
Insurance Liabilities that aims to provide a 75% likelihood of sufficiency, consideration of the 
both sources of variability is required.  I would suggest that this is unfortunate wording in GPS210 
rather than a deliberate attempt to exclude process variability. 

                                                 
2 Approximate methods that might avoid this requirement are lost once one recognises that the distribution of possible 
claims outcomes is skew. 
3 In the sense that process variability acts around some other number (being the ‘true’ mean) rather than our 
assessment of the central estimate. 
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3.2.1 Sources of Estimation Error 

 
In actuarial nirvana, where the environment is stable, the nature of the claims process (including 
the nature of random elements), is perfectly understood, and data is error free, the two components 
should be closely related.  In this fantasyland, the outstanding claims estimation model will reflect 
the perfectly understood claims process.  However, since selected model parameters will be based 
on a claims history that is a small sample of observations subject to process variability, fitted 
parameters will most likely differ from the ‘true’ ones underlying the process.  Therefore, as well 
as being the generator of variability around the true mean, process variability also generates 
estimation error.  
 
In practice, estimation error can arise from other sources as well.  It is my view that these sources 
are generally more important.  The most significant category of other sources is associated with 
application of judgement in its various forms.  Another important source of estimation error can be 
unidentified data errors.  
 
As a hypothetical example, of estimation error that is unrelated to process variability, an actuary 
might judge that the length of the claim reporting tail for a public liability portfolio will be reduced 
compared to past experience, say due to the impact of various tort law reforms.  Because the actual 
impact may be different from what the actuary anticipates, this risk represents a potential source of 
estimation error that is not associated with process variability.   
 
Real and/or assessed changes in portfolio conditions necessitating the application of judgement 
introduce risk of estimation error that is not associated with process variability.  Important 
features of these sources of this risk include: 
 
• They are particular to each valuation, since different actuaries will form their own view 

regarding the likely impact of changing circumstances. 

• ‘Industry analysis’ is unlikely to help quantify them. 

• They are not generally captured by common analytic techniques that actuaries use to help 
evaluate uncertainty and set risk margins 

• They are a source of systemic risk, in the sense that their relative impact does not diminish 
with increasing portfolio size. 

• Because judgement is a feature of most valuations, this source of estimation error is also a 
feature of most valuations.  

 
Sources of estimation error that are not associated with process variability will generally increase 
the probabilistic spread of how outcomes might vary around the assessed central point.  Hence, for 
central estimates, there is potential for upside and downside risk to offset.  However, considering 
implications for risk margins, it is only the downside potential of estimation error that is 
important.  For the risk margin, there is no offset from upside potential.  
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Analytic techniques most commonly used to set risk margins, such as the Mack method and 
bootstrapping, treat estimation error as arising solely due to process variability.  The risk that 
model parameters underlying central estimates might differ from the ‘true’ parameters is treated by 
them as arising because model parameters are determined based on a claims history which is a 
small sample of observations that are subject to process variability.  Therefore, when one is using 
such analytic techniques, it is important to bear in mind that they will not capture all sources of 
variability that need to be taken into account in risk margin assessment.  One can argue that a risk 
margin derived using them should be considered a minimum (or possibly – below the minimum). 
 
The importance of the sources of error not related to process variability depends on: 
 
• Whether or not a portfolio’s circumstances have changed so that history forms a less 

helpful basis from which to assess Insurance Liabilities. 

• Whether or not a portfolio’s circumstances ought to be judged to have changed so that 
history forms a less helpful basis from which to assess Insurance Liabilities. 

• The judgement position taken. 

• How closely the actuarial models mirror the true underlying claims process (which will 
always be unknown). 

• The rigour accompanying data verification. 
 

3.2.2 Systemic and Independent Components of Variability in how Outcomes Compare to 
Actuarial Estimates 
 
The variability of ultimate interest in Insurance Liability assessment is variability in the extent to 
which actual outcomes depart from the actuarial estimate of the liability.  When examining the 
sources of this variability, it can be useful to try to categorise them as systemic or independent to 
help understand the extent to which risk margins should decrease with increasing portfolio size. 
 
Systemic variability Can be defined as variability that does not diminish as a proportion of 

the liability as portfolio size increases.  
 
Independent variability Can be defined as variability that diminishes as a proportion of the 

liability as portfolio size increases. 
 
Independent sources of variability relate to intrinsic variability of the claims experience of 
individual risks, that do not carry implications for likely claims costs for other risks in the 
portfolio. The chance occurrence or non-occurrence of ‘non-catastrophe’ events that give rise to 
claims is an example of a source of independent variability. 
 
Systemic sources of variability can be categorised into two components: 
 
1. Drivers of claims cost that may affect multiple policies simultaneously.   
 

For example, in the case of premium liability assessment, for a home portfolio without 
much geographical diversification, risk of storm damage could be considered systemic.  
Inflation is another commonly cited example that would affect cost across many claims in 
long tail portfolios. 
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2. Variation in the adequacy of outstanding claims estimates that results from the Insurance 

Liability estimation process.   
 

For example, a judgement that prior poor performance will turn around, say due to 
improvements in claims handling might prove to be ill-founded.  The risk that this could 
happen generates a risk that outstanding claims estimates might prove inadequate.  This 
risk doesn’t diminish with the size of the portfolio, so is systemic.  However, it is not 
associated with intrinsic variability in claims experience.  The risk arises due to the 
valuation process, and the chance that the actuary’s judgement might be wrong. 
 
Sources of the second component of systemic risk include: 

• Adoption of an inappropriate (ill-fitting) projection model. 

• Optimism that recent poor performance is not indicative of likely future 
performance. (where this proves to be ill founded) 

• Judgement overlays in parameters selection. 

• Data that is incomplete, inaccurate, or insufficient. 

• Not recognising items such as changes in: 

- Policy conditions 
- Exposure 
- Legislation 
- Judicial interpretation 
- Case estimation practice 
- Claim management practice 
- Business Mix 

• Not recognising implications of the skewed nature of Insurance Liabilities on 
appropriate parameter selection.  

 
Compared to a small insurer, the greater wealth of data on which a large insurer’s Insurance 
Liability estimates are based should mean that the component of estimation error arising due to 
process variability is relatively small.  However, the other sources of estimation error are much 
less likely to diminish with increasing portfolio size.  Risk arising from estimation error that is not 
associated with process variability is systemic in nature. 
 
Because data comparing claims outcomes with previous projections isn’t publicly available, it isn’t 
possible to determine empirically how quickly systemic sources of variability come to dominate as 
portfolio size increases.  However, it will be faster than if we were only concerned with the first of 
the two systemic variability components. 



 
 

18

 
3.2.3 PS300 Categorisation of Sources Of Variability 

 
Another way of categorising sources of uncertainty influencing risk margin assessment is along the 
lines of the breakdown provided in PS300.  The Professional Standard makes specific reference to 
the following categories.  With the exception of a specific reference to process error, each can be 
regarded as relating both to process variability and estimation error. 
 
i. Model Selection Error - Because the models are a simplification of the claims process, it 

might be that none of the various models used is an entirely accurate representation of 
reality. 

 
ii. Parameter Error - Because there are components of randomness in the claims process, it is 

not possible to estimate the parameters of that process with complete precision even if 
complete confidence were felt in the nature of the model. 

 
iii. Parameter Evolution Error – This is described as deriving from the inclusion in a model 

as constants any parameters that are in fact subject to change over time.  The change may be 
smooth over time, or may come in the form of sudden ‘shocks.’ 

 
iv. Process Error - Even if the parameters could be estimated with precision, it would not be 

possible to predict outstanding claims with the same precision because of the random 
component in future experience. 

 
Other important sources of uncertainty include: 
 
v. Input Data Error - Any erroneous data will similarly have introduced uncertainties into the 

estimate of those parameters 
 
vi. Judgement Error – At each Insurance Liability assessment, the actuary must form a view 

about the possibility that systemic (ie non-random) changes may occur in claims experience. 
Because actuarial judgement is not perfect, there is always a risk associated with the 
possibility that judgement calls might be wrong. 

 
Each source requires consideration when assessing risk margins, and to avoid risk margin 
understatement, it is important to ensure that none are left unaddressed. 
 
It can be worthwhile reviewing the methods that have been used to assess the central estimate and 
the risk margin under each of these categories to reduce the chance that sources of variability have 
been missed.  It is also possible that valuation processes might increase some sources of 
uncertainty.   
 
For example, it is not uncommon for Insurance Liability estimates to be based on data extracted 
from claims and policy administration systems earlier than the effective assessment date in order 
to meet profit reporting and other deadlines.  Typically, this requires grossing-up of the data 
inputting the valuation to reflect what the actuary expects claims experience to the effective 
assessment date to look like. 
 
Compared to the case where data is extracted at the effective balance date, grossing-up of data 
extracted earlier introduces an additional source of uncertainty.  In terms of the previous list, it is a 
mix of process error, and input data error.   
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Possibly more importantly, it interferes with the actuary’s ability to go through the normal control 
cycle process of comparing experience with previous projections. Hence, where grossed up data is 
used for analysis, the actuary should assess the degree to which uncertainty is increased, and take 
this into account in the risk margin assessment.  
 

3.3 Quantitative Methods Used to Assess Risk Margins  
 

3.3.1 Brief description of three methods  
 
Actuarial literature describes a range of quantitative assessment techniques that can be used to 
estimate predictive distributions for claims outcomes.  There is increasing interest in this active 
field of research.  In this paper, I have focussed on three that I see used most often in practice.  The 
three techniques are: 
 
• The Mack Method 

• Bootstrapping  

• Modelling based on Zehnwirth’s Probabilistic Trend Family (‘PTF’) as implemented in the 
statistical claims reserving tool ICRFS -PlusTM (“ICRFS”) 

 
Each technique carries (explicit or implicit) assumptions that need to be met before meaning can 
be attached to its results.  For these methods to produce meaningful results and for them to be 
relied upon, it is important that the assumptions on which they are based are tested and verified.  
However, in my audit support work, I often come across situations where these methods are relied 
upon even though their underlying assumptions are not met. 
 
As a minimum, it would seem necessary to check that a well fitting model, having the form 
assumed by the method can be found.  This well-fitting model needs to give a similar result to the 
adopted central estimate.  If such a model can’t be found it seems illogical to expect sound 
conclusions to be drawn from the quantitative risk margin assessment method. 
 
If judgement (as opposed to simple model fitting) is applied as a significant input to determine the 
central estimate, it is less likely that such a model will be found.  In such an instance, just as 
judgement forms the basis of the central estimate, so to it will need to form the basis of the risk 
margin assessment based on estimates of process variability, and the risk that the judgement could 
be wrong. 
 
A brief description of the three methods and some comments on their underlying assumptions 
follow.  The interested reader is referred to the references in the bibliography for more 
comprehensive descriptions. 
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Mack 
 
Mack (1994) has developed a formula describing the standard error of prediction of outstanding 
claims estimates, where those estimates have been determined based on a particular mechanical 
application of the chain ladder.   
 
The particular mechanical application is where the development factor Ft that, when multiplied by 
the cumulative claims cost to development period t, gives the expected value for cumulative claims 
cost to development period t+1 is determined as the ratio of: 
 
(#) - The sum across accident years of cumulative claims cost to development period t+1, to 

- The corresponding sum of cumulative claims cost to development period t.  
 
This is a standard application of the chain-ladder, but is different to an application that selects 
assumptions based on experience over the last few transaction years rather than the full history 
triangle. 
 
Superficially, the chain ladder model appears to be very simple.  However, in his 1994 paper Mack 
highlights that its use effectively makes a number of significant assumptions about the claim cost 
development process. 
 
His formula is derived based on the premise that these assumptions are all met.  In his paper, he 
warns that the assumptions are quite strong, and won’t be met by all claims triangles.  Helpfully, 
his paper includes a series of semi-formal tests which one should verify as met before applying his 
formula.  Examples of these tests are set out in Appendix A.  In practice, it is important that tests 
are conducted, and are found to provide a satisfactory result before this method is used. 
 
He argues that an implicit assumption made when applying the chain ladder, is that the estimator 
of the ‘true’ underlying development factor is unbiased.  Other ways of selecting development 
factors (for instance, the simple average of the individual development factors for each accident 
year) would give rise to the same expected value for the estimator.  To answer the question:  “Why 
is the particular estimator favoured?”, he recalls that amongst several unbiased estimators, 
preference should be given to the one with the smallest variance.  He concludes that we must 
therefore be assuming that the estimators (#) described previously are the unbiased estimators with 
least variance.   
 
Based on implications that follow from this conclusion, and other assumptions that he shows are 
implied by use of the chain ladder, he derives a formula for the standard error of prediction.  
 
Further commentary on the Mack method is set out in Appendix B. 
 
The method assumes that a well fitting4 chain ladder method describes the central estimate.  One 
implication that follows from this is that where it would not be reasonable to set the central 
estimate using the chain ladder approach, it would not be reasonable to rely upon the Mack method 
to help determine the standard error of prediction and hence risk margins.  Generally, actuaries 
would not regard the chain ladder as a suitable approach to set the central estimate for long tail 
insurance classes. 

                                                 
4 Well fitting in the sense that the claims history meets the specified tests. 
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For practical application, the mean and standard error of prediction need to be supplemented with 
a distributional assumption  (this contrasts with the following two methods that estimate the full 
predictive distribution directly).  Mack suggests lognormal, but there is no compelling reason why 
other forms, such as gamma or log gamma ought not be regarded as equally appropriate 
candidates. 
 
Due to its relatively thick tail, the 75th percentile of a lognormal distribution commonly sits a little 
below the 75th percentile of alternative right skewed distributions with the same mean and 
variance. 
 
Bootstrapping 
Bootstrapping derives estimates of the probability distribution of a statistic by repeated re-
calculation of it, using random samples drawn with replacement from the original data.  
Because the sampling is with replacement, at each repetition some items in the data set are 
selected two or more times, and others are not selected at all.  When this is repeated a large 
number of times, we get ‘pseudo-calculations’ of the statistic that, provided certain 
conditions are met, should have a similar distributional form to its underlying probability 
distribution. 
 
In general insurance claims reserving, bootstrapping is typically performed to derive results by re-
sampling residuals rather than the data itself. (This is because the data can’t be reasonably 
assumed to be identically distributed across accident and development years, but residuals <or 
some suitably defined function of them> can be).  This application of bootstrapping effectively 
assumes that the underlying process is of known form, and that repeated re-sampling of the 
observed residuals around this process captures information about variability characteristics. 5 
 
The interested reader is directed to Efron and Tibshirani (1993) for more detail regarding 
bootstrapping procedures. 
 
Bootstrapping is often presented as a straightforward and easy to apply method for assessing 
distributional characteristics of a process based on sample data.  However, it is a tool that requires 
care to ensure reasonable results.  For instance, sometimes it is necessary to adjust for bias in 
parameter estimates, and to ensure that the residual definition is appropriate.  Appropriate residuals 
are not always observed values less fitted values (see England & Verrall (1999)). 
 
One must recognise that bootstrapping fails when its assumptions are violated.  For example if: 

• The residuals are not independent 

• The residuals (or function of them) are not identically distributed 

• The assumed underlying process is different from the actual process 

These violations arise as a result of the chosen reserving model not fitting the data well.  In 
practice, the run-off process is complex, and a well fitting model may be elusive. 
 
The bootstrapping procedure used for the illustrations in this paper is described in Appendix C.  It 
is one of the methods presented by Bonnard et al (1998).  I have illustrated bootstrapping with this 
approach, since it is one I have come across in practice.  Depending on the circumstances, one 
might argue that alternative structures might have greater technical merit. 

                                                 
5 An important underlying assumption is that we have a representative sample of all the possible distinct population values present 
in our data (Rubin, 1981) 
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Zehnwirth’s Probabilistic Trend Family (‘PTF’) as implemented in ICRFS-Plus 
 
This assessment method is based on the assumption that incremental payments have 
heteroscedastic lognormal distributions, following a piecewise loglinear structure6 in the accident, 
development and calendar years.   
 
The ICRFS interface incorporates a number of visual and statistical tests of fit, and statistics that, 
when properly utilised, protect against inclusion of non-significant parameters in the selected 
model.  For the reader who is unfamiliar with the ICRFS interface, Appendix D provides an 
example that illustrates the model fitting process.  For more details about the underlying model, 
the reader is referred to Barnett & Zehnwirth (2000). 
 
In practice, ICRFS is an interactive modelling tool.  Judgement and knowledge of the underlying 
business play a key role in the model fitting process.  However, the models presented in this paper 
have been fitted using an automatic model fitting functionality that is built into the program. 
 
The starting model was fully parameterised in the accident, development and calendar year 
directions.  
 
The model structure was determined by backward elimination of insignificant parameters, with 
significance determined by T-ratios, using the in-built ICRFS model optimisation method.  First, 
insignificant changes in trends and levels were removed.  Insignificant trends were then set to zero, 
and, finally, smoothing was done on accident year parameters. 
 
This process is open to a number of sound qualitative and technical criticisms, and this automatic 
process should not be used to fit models in practice.  However, for the purpose of this paper, the 
approach has the advantage of allowing the interested reader to reproduce the results.  Examples 
can also be found where this process gives unreasonable results, and drawing attention to these 
may be of benefit to novice users of ICRFS.  My aim is not to pass any opinion on the ICRFS 
reserving package or PTF models, and I would stress that no reader should expect to draw general 
conclusions about the reliability of the models fitted using the ICRFS package based on the 
presentations in this paper. 
 
The ICRFS reserving tool includes functionality it terms ‘PALD’ that can be used to assess the 
predictive distribution of claims outcomes consistent with the selected model.  PALD samples 
from the given model, which defines a joint distribution of correlated lower triangle cells, each 
lognormally distributed with its own mean, standard deviation and correlation with other cells. 
Each individual sample is a complete lower triangle, which in turn yields an outstanding claims 
liability total.  Repeated sampling of values of outstanding claims totals forms the distribution of 
interest. 
 
ICRFS allows selective inclusion of parameter uncertainty in forecasting and estimation.  
Parameter uncertainty was included in this exercise because it is the full predictive distribution that 
is of practical interest in setting reserves.  
 

                                                 
6 Piecewise loglinear structure means that the triangle of logs of incremental payments is described by piecewise linear 
trends in accident and calendar years, and smoothed levels across the accident years. The log of the incremental 
payments are normally distributed, with means determined by the sum of accident, calendar and development levels 
for each cell. 
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There are limitations to the extent that the PALD output, as I have described it, should be expected 
to generate a reasonable picture of the predictive distribution of claims outcomes.  The more 
significant limitations are: 
 
• No direct account is taken of the possibility that future changes could occur to the 

parameters of the piecewise loglinear structure.  Particularly when a number of past 
changes are incorporated into the fitted model, the assessed variability of claims cost 
outcomes risks being understated as a result of this. 

• No direct account is taken of changes in rates of claim finalisation.  Without adjustment, if 
payment levels are increasing because finalisation rates have increased, under a PTF/PALD 
assessment, this can contribute toward overstatement of the amount required to secure 
liabilities with a given likelihood of adequacy.  The reverse is true if payment levels have 
fallen because finalisation rates have been reduced.  Any adjustment would be subjective, 
and would carry risks associated with subjective adjustment. 

• For property classes, if the claims history includes spikes relating to events (such as 
hailstorms), without a subjective adjustment, the fitted PTF model and PALD estimates 
will, at least in part, treat the spike as indicating variability around a fitted model.  This is 
fine in the case of premium liability estimates, but for outstanding claims, the actuary 
should know at the time of the valuation, whether or not such an event has recently 
occurred and needs to be reserved for.  This can contribute overstatement of the likely 
variability in outstanding claims outcomes.  

 
The items in the list are also limitations associated with the other two methods.   
 

3.4 Testing performance of Analytical Methods against known (artificial) Processes 
 

3.4.1 Introduction  
 
In this section, the three methods are examined in two artificial test settings.  In each setting, the 
claims process follows a series of predetermined rules that incorporate a random element.   
 
The first test setting involves a claims generating process that satisfies many of the assumptions 
associated with chain-ladder assessments.  The second involves a claims generating process that 
does not satisfy these assumptions. 
 
The aim of this exercise is to explore how well each method performs under the two claims 
generating processes.  A priori, one would expect that where the assumptions made by an analysis 
technique are met, it should perform reasonably well.  Where they are not met, one would expect 
less satisfying results. 
 
For each process, a series of development triangles of incremental claim payments is generated.  
The three assessment techniques are then applied to estimate the probabilistic distribution of 
claims outcomes. 
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In practice, we never have perfect knowledge of the claims generating process, so we can never 
test whether our estimate of claims outcome distributions follows the ‘true’ distribution.  However, 
in the test settings, claims history has been simulated from a predetermined process.  I have 
modelled this process as continuing into the future.  Therefore, the ‘true’ probabilistic distribution 
of claims outcomes is known.  The distribution assessed under the three methods can therefore be 
compared with the ‘true’ distribution. 
 
My aim is to explore the general effect of model specification error.  By this I mean exploring the 
effect of using methods to assess the full probabilistic distribution of claims outcomes and stand-
alone risk margins when the assumptions that underlie the assessment method are not satisfied.  It 
is not possible to test every combination of claims process, and risk margin assessment technique, 
and I would not expect this exploration to allow general conclusions to be drawn about whether 
any particular technique is superior to others.   
 

3.4.2 Important Cautionary Note on Interpretation of the Results 
 
For each of the ‘true’ distributions, the probabilistic distribution presented represents the ‘process 
variability’ associated with the mechanism that I have set to generate claims outcomes, spread 
around the true mean.  The process underlying claims cost generation is stable, and finishes at a 
known and fixed development period. 
 
Where I have presented risk margin required to get from true mean to the 75th percentile of the 
‘true’ distribution, it is a margin required to cover process variability.  For the illustrations and 
statistics labelled ‘true’, it is known with certainty that there is no possibility of estimation error.   
 
For the presentations of the quantitative assessment methods, there is a possibility (which can be 
seen in the presentations) that the assessed mean could be different from its true value.  Therefore 
the risk margin assessed by each of the quantitative methods needs to cover both process 
variability and estimation error.  Hence, the assessed risk margins ought to be higher than the 
‘true’ margin required to cover process variability only. 
 
It is also worth noting that in the illustrations of the quantitative methods I have applied them 
mechanically.  In practice, actuaries using the illustrated methods are likely to consider whether:  
 
• Outliers exist or are under-represented 

• Judgemental overlays should be made to calculated results. 

• In the future the claims generating process might depart from the past process. 

• Historically there have been shifts in the claims generating process. 

Additionally, in the modelling environment there is no pressure from anyone with a vested interest 
in the result, and the modeller does not feel constrained by any concern about deviating from the 
previous valuation assumptions too much.  
 
In summary, there are no sources of ‘estimation error’ that a risk margin derived from the 
analyses needs to take into account, other than that those deriving from process variability and 
inappropriate specification of the form of the model. 
 
In practice however, a risk margin must provide protection against all sources of variation in 
outcomes from the central estimate.  
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3.4.3 The Test Processes 

 
The full detail of the claims generating process that I have set for this test is set out in Appendix E.  
The main criteria that I have tried to meet in setting the process are that for: 
 

Process 1 - Chain Ladder assumptions are generally satisfied. 

Process 2 - Chain Ladder assumptions are generally not satisfied. 
 
Process 1 
 
For Process 1, claims are modelled so that for a given accident year, the mean value of the 
cumulative claims cost at the end development period k, is a multiple, Fk-1, of the observed 
cumulative claims cost to the end of development period k-1.  Incremental claims cost for a 
development period includes a random element that follows a lognormal distribution; the precise 
nature of which depends on the expected value for the incremental claims cost. 
 
For the test process, the development factors Fk are: 
 

Process 1 – Chain Ladder Factors 
Development 

Period (j) 
0 1 2 3 4 5 6 7 8 

Fi,j 3.000 1.650 1.300 1.200 1.080 1.060 1.040 1.020 1.005 
 
To start the process off for each accident year, the development Period 0 claims cost is modelled 
as an observation of a lognormal random variable with mean 20,000, and standard deviation 
10,000. 
 
For later development periods, the random component has standard deviation equal to 60% of the 
expected incremental value.  The lognormal distribution that the random element is modelled to 
follow is translated.  Before translation, its expected value is 80% of the expected incremental 
claims cost.  The translation shifts the expected value for the random element to be zero. 
 
It is difficult to imagine what underlying features of a set of risks would lead to this sort of claims 
process being followed in practice.  Nonetheless, the chain-ladder effectively assumes that this is 
the sort of process that claim costs follow.   
 
Process 2 
 
For Process 2, claims cost is generated as a random selection from a series of lognormal 
distributions.  The distributions are a function of development year, but are independent of 
accident year. For instance, claims in development period 0 are modelled as lognormal random 
variables with mean 12,000 and standard deviation 3,600; claims in development period 1 are 
modelled as lognormal random variables with mean 24,000 and standard deviation 8,400.  Details 
for the other development periods are shown in Appendix E. 
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True probabilistic distribution of Claims Outcomes 
 
By simulation, a claims history can be repeatedly generated under each process.  The ‘true’ 
probabilistic distribution of possible claims outcomes, associated with the outstanding claims 
liability for any history triangle is difficult to determine analytically, but can be quite easily 
determined by repeated simulation.   
 
The nature of Process 1 is that this ‘true’ distribution is dependent on what is observed for the 
history triangle (more precisely; it depends on the observation for the last diagonal).  By contrast, 
the ‘true’ distribution for Process 2 is not contingent at all on the particular observation for the 
claims history.  
 
This difference has an implication for the way results can be presented.   
 

For Process 1 

The ‘true’ distribution for outstanding claims costs is different for each history triangle.  
So each time a history triangle is re-generated by simulation, there will be a different 
assessment of the distribution by the Mack method, bootstrapping and the PTF model.  
There will also be a different ‘true’ distribution.   
 
For Process 2 

The ‘true’ distribution for outstanding claims costs is not dependent on what is observed 
for each history triangle.  So each time a history triangle is re-generated by simulation, 
although there will be a different assessment of the distribution by the Mack method, 
bootstrapping and the PTF model; the ‘true’ distribution of outstanding claims liability 
will not change.   
 
For Process 2, the total outstanding claims liability is the sum of a large number of 
lognormal distributions.  Its distribution is straightforward to determine by simulation.  
The ‘true’ distribution of possible claim outcomes was determined based on 25,000 
simulations using the Excel add-in package @Risk.©  It is graphed below. 
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The distribution has: 
 

• Mean $292,000 
• Standard deviation $35,100 
• Coefficient of variation 12.00% 
• 75th percentile $314,000 
• ‘True’ required risk margin as a percentage of the ‘true’ mean to give rise to a 

75% likelihood of adequacy of 7.45% 
 

3.4.4 Process 1 Results 
 
Process 1 follows chain ladder assumptions, so ‘a priori’ one would expect that methods used to 
assess the full distribution of possible claims outcomes, that rely on chain-ladder assumptions 
being satisfied are likely to perform reasonably well.   
 
The results of simulations from six randomly generated history triangles are set out graphically 
below.  The history triangles associated with each simulation (and six others) are provided in 
Appendix E.  Appendix F shows graphs for all history triangles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Process 1- Example 1  - 'True' Distribution of Possible 
Outcomes vs Assessment by various methods 
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Actual Mack Bootstrap ICRFS

Process 1 - Example 2  - 'True' Distribution of Possible 
Outcomes vs Assessment by various methods 
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Actual Mack Bootstrap ICRFS

Process 1 - Example 3  - 'True' Distribution of Possible 
Outcomes vs Assessment by various methods 
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Actual Mack Bootstrap ICRFS

Process 1 - Example 4  - 'True' Distribution of Possible 
Outcomes vs Assessment by various methods 
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Actual Mack Bootstrap ICRFS

Process 1 - Example 5  - 'True' Distribution of Possible 
Outcomes vs Assessment by various methods 
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Actual Mack Bootstrap ICRFS

Process 1 - Example 6  - 'True' Distribution of Possible 
Outcomes vs Assessment by various methods 
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Actual Mack Bootstrap ICRFS
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Key statistics from the twelve tests of Process 1 are set out in the next two tables. 
 

Results Summary – Process 1 
$’000 

Example  Mean 75th Percentile 
Number True Bootstrap Mack ICRFS True Bootstrap Mack  ICRFS 

1 439 331 332 416 485 370 368 449 
2 495 500 503 609 548 562 551 672 
3 519 474 475 854 576 519 510 939 
4 358 319 322 314 395 356 358 341 
5 482 456 471 426 531 520 539 469 
6 572 518 522 612 632 578 570 666 
7 483 363 364 387 536 398 393 419 
8 393 419 422 413 431 465 467 452 
9 521 356 361 230 582 405 400 264 

10 521 506 510 504 574 554 558 590 
11 403 464 466 445 450 518 507 499 
12 410 401 403 336 459 455 441 377 

         
 

Process 1 
Risk Margin to get from True/Assessed Mean 

To True/Assessed 75th Percentile 
Example No. True Bootstrap Mack ICRFS 

1 10.5% 11.8% 10.8% 7.9% 
2 10.7% 12.4% 9.5% 10.3% 
3 11.0% 9.5% 7.4% 10.0% 
4 10.3% 11.6% 11.2% 8.6% 
5 10.2% 14.0% 14.4% 10.1% 
6 10.5% 11.6% 9.2% 8.8% 
7 11.0% 9.6% 8.0% 8.3% 
8 9.7% 11.0% 10.7% 9.4% 
9 11.7% 13.8% 10.8% 14.8% 

10 10.2% 9.5% 9.4% 17.1% 
11 11.7% 11.6% 8.8% 12.1% 
12 12.0% 13.5% 9.4% 12.2% 

     
 
The following observations can be made: 

• The Mack and Bootstrap assessment of the mean is almost exactly the same for each 
simulation (simulation number five being the exception).  This is not surprising as each of 
them is trying to fit a chain ladder to the same set of triangles. 

• The Mack and Bootstrap central estimates sit below the true mean more often than they sit 
above it (9 times out of 12).  Investigating this aspect further, with 25,000 simulations, just 
over 75% of the time, the outstanding claims estimate derived from applying chain ladder 
factors based on the sample claims triangles gives a lower result than that calculated based 
on the ‘true’ underlying chain ladder factors.  This is an example of the effect of the 
phenomenon discussed in Section 2.2, that more often than not, the mean of a sample from 
a skewed distribution will understate the true mean. 
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• For this particular example (ignoring the central estimate understatement), in percentage 
terms, bootstrap assessment of the required risk margin was generally above the ‘true’ 
requirement needed to cover process variability, and the Mack assessment was generally 
below it.  This means that the Mack assessment did not come up with a high enough 
margin even to cover process variability.  In practice, we would want a risk margin to 
protect against process variability and estimation error.  

• Though in percentage terms, the bootstrap assessment of the required risk margin sits 
above the ‘true’ requirement, it is not enough to make up for the central estimate 
understatement.  In absolute terms, the assessed 75th percentile was below the ‘true’ 75th 
percentile in 9 of the 12 examples. 

• Visually, the bootstrapping procedure and the Mack method seem to do a reasonable job of 
capturing the general shape of the ‘true’ distribution.  Notwithstanding the previous 
comments, the assessed distribution is generally in ‘roughly’ the right location. 

• For examples 1, 7 and 9, the tables and the charts in the appendices the Mack and bootstrap 
assessments of the distribution are particularly distant from the ‘true’ distribution.  
However, when tests as described in Appendix A are performed on these triangles, the 
assumption that the triangles are following the chain-ladder assumptions would be 
rejected.7 This illustrates the importance of checking fit before drawing conclusions. 

• The ICRFS assessment of the outstanding claims cost distribution is often quite different to 
Mack and Bootstrapping.  This is not surprising as the underlying form of the model is 
quite different. 

• While the ICRFS assessment of the 75th percentile point often lies some distance from the 
‘true’ location; for the twelve example triangles, it has the merit of being above the true 
point 50% of the time and below it 50% of the time. 

• The PTF result in example 3 is worthy of comment. It is a long way from the true 
distribution.  This seems to have arisen as a result of the backward elimination process 
which spuriously found: 
-  a sustained increasing accident year trend 
- compensated for by a calendar year trend, which 
- ceased and became zero in the last calendar year. 

It is not difficult to find a model fitted using ICRFS in a less mechanical way that has a 
distribution much closer to the true distribution.  Notwithstanding that its statistical fit is 
not unreasonable, the features of the model derived by backwards elimination would most 
likely be rejected on qualitative grounds. This serves as an example of the danger 
associated with trying to fit the PTF models with ICRFS in the simplified way that has 
been done for the purpose of contrasting with the Mack method and bootstrapping in this 
paper.  In practice, a qualitative assessment is required to check that model makes sense, 
even if it provides a good theoretical fit. 

                                                 
7 The check is whether chain ladder assumptions about the assessed development factors are being followed.  Even 
though the generating process is a chain ladder, it is about different development factors than would be estimated 
based on a sample history.   
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3.4.5 Process 2 Results 

 
Process 2 does not follow chain ladder assumptions, and so ‘a priori’ one would expect that 
methods used to assess the full distribution of possible claims outcomes that rely on chain-ladder 
assumptions being satisfied, are likely to perform less well under this process.   
 
Although the process doesn’t follow chain ladder assumptions (and tests suggested in Appendix A 
would generally clearly show this to be the case for the claims history triangles), triangles of claim 
development factors calculated from history triangles generated by this process often don’t ‘look’ 
too bad.  However (with one exception) each triangle would fail the tests described in Appendix A. 
 
In practice, I have seen chain ladder results given weight with claims development triangles that 
appear to follow chain ladder assumptions less closely.  
 
Mack 
 
Each example history triangle has an associated outstanding claims cost distribution estimate 
assessed according to the Mack method. 
 
Twelve claims history triangles generated from Process 2 are set out in Appendix E.  Mack method 
calculations were performed for each triangle.  The resultant assessment of the distribution of 
possible claims outcomes for each of the twelve triangles is set out in the chart below, and 
compared with the ‘true’ distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Points I note are: 
 
• The assessed distribution can be very different depending on the history triangle that arose 

from the process. 

• Based on the twelve examples, the distribution of the distributions appears right-skewed.   

• The higher the ‘chain-ladder’ estimate of the mean, the greater the Mack estimate of the 
variability around the assessed mean. 

• Unsurprisingly, the spread of each distribution is wider than the ‘true’ spread.  The reader 
is re-directed to the earlier cautionary note on interpretation of the results.  The ‘true’ 
spread relates to process variability only.  However, in practice, uncertainty in outcomes 
arises from process variability and estimation error.   

'True' Claims Distribution vs Mack Estimates - Process 2

75 115 155 195 235 275 315 355 395 435 475 515 555 595 635 675 715

Claims Outcome $'000

Re
lat

iv
e F

re
qu

en
cy

 



 
 

31

 
It is worth considering whether triangles that give rise to the curves furthest to the right contain 
observations that, in practice, would be given reduced weight as ‘outliers.’  Removing, (or giving 
less than full weight to) ‘large’ observations would narrow the Mack curves and shift them to the 
left. 
 
Bootstrapping 
 
The same example history triangles, has an associated outstanding claims cost distribution estimate 
assessed according to the Bootstrap method as described in Appendix C. 
 
The resultant estimates of the distribution of possible claims outcomes for each of the twelve 
triangles is set out in the chart below, and compared with the ‘true’ distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
General observations associated with the bootstrapping results are not qualitatively different to the 
observations for the Mack assessment.  The assessed distributions are typically a little less wide 
than under Mack.  More comments on the results are set out after the tables on page 33. 
 
PTF as assessed by ICRFS 
 
A PTF model was fit to the same history triangles using the reserving package ICRFS. 
 
The assessment of the distribution of possible claims outcomes for each of the twelve triangles is 
set out in the chart below, and again compared with the ‘true’ distribution. 
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Under this process, the ICRFS models come noticeably closer than Mack or bootstrapping to 
capturing features of the ‘true’ distribution.  As the models are not restricted to a chain-ladder, and 
the process doesn’t satisfy chain-ladder assumptions, one would expect the PTF models to 
outperform bootstrapping and Mack in this situation.  More comments on the results are again set 
out after the tables on page 33. 
 
A second presentation of the results for Process 2 is set out below, that is consistent with the 
presentation for Process 1.  Six charts are shown here, and a total of twelve (including the six here) 
are shown in Appendix F.  The set of charts confirms the earlier impression that the ICRFS PTF 
model’s additional flexibility allows it to better model this (non-chain ladder) process.  In 8 of the 
12 graphs presented in appendix F for Process 2, the visual impression is that the ICRFS model 
captures the true distribution much better than the other two methods.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Process 2 - Example 1 - 'True' distribution of Possible 
Outcomes v Assessment by Other methods
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Process 2 - Example 2 - 'True' distribution of Possible
 Outcomes v Assessment by Other methods
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Process 2 - Example 3 - 'True' distribution of Possible
 Outcomes v Assessment by Other methods
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Process 2 - Example 4 - 'True' distribution of Possible
 Outcomes v Assessment by Other methods
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Process 2 - Example 5 - 'True' distribution of Possible
 Outcomes v Assessment by Other methods
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The next two tables gather key statistics from each of the models for the twelve examples. 
 

Results Summary – Process 2 
$’000 

Example  Mean 75th Percentile 
Number True Bootstrap Mack ICRFS True Bootstrap Mack  ICRFS 

1 292 339 336 292 314 368 374 323 
2 292 332 327 286 314 367 370 306 
3 292 234 232 246 314 262 262 266 
4 292 248 246 209 314 275 279 225 
5 292 391 390 390 314 432 439 421 
6 292 210 208 237 314 239 240 255 
7 292 229 228 266 314 253 255 288 
8 292 443 440 312 314 486 498 338 
9 292 261 259 310 314 299 299 337 

10 292 278 276 269 314 308 311 306 
11 292 230 228 137 314 257 260 158 
12 292 257 264 265 314 289 305 289 

         
 
 

Process 2 
Risk Margin to get from True/Assessed Mean 

To True/Assessed 75th Percentile 
Example No. True Bootstrap Mack ICRFS 

1 7.5% 8.6% 11.3% 10.6% 
2 7.5% 10.5% 13.1% 7.0% 
3 7.5% 12.0% 12.9% 8.1% 
4 7.5% 10.9% 13.4% 7.7% 
5 7.5% 10.5% 12.6% 7.9% 
6 7.5% 13.8% 15.4% 7.6% 
7 7.5% 10.5% 11.8% 8.3% 
8 7.5% 9.7% 13.2% 8.3% 
9 7.5% 14.6% 15.4% 8.7% 

10 7.5% 10.8% 12.7% 13.8% 
11 7.5% 11.7% 14.0% 15.3% 
12 7.5% 12.5% 15.5% 9.1% 

     
 
Observations include: 
 
• As for Process 1, there is an impact associated with sampling from a skewed distribution. 8 

out of the 12 triangles having the central estimate understated under Mack and 
Bootstrapping. 

• 8 out of the 12 examples have the 75th percentile underestimated by the Bootstrap, Mack 
and ICRFS assessments.  Even though in percentage terms, the assessed risk margin is 
higher than the ‘true’ margin required to protect against process variability, the estimation 
error is such that the ‘additional’ risk margin under each of the methods is not large enough 
to compensate for central estimate understatement. 
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• Testing whether chain-ladder assumptions are met by the triangles, should in practice lead 
to rejection of chain ladder (and hence the Mack method, and the particular application of 
bootstrapping illustrated) in 11 of the 12 illustrations.  (Triangle 1 being the exception) 

• The ICRFS fit for triangle 11 is a rather spectacular understatement of outcomes that are 
possible based on the underlying claims generating process.  Examining this, the 
understatement has arisen because, by chance a negative trend is detected across 
transaction years in the observed history triangle that is assessed as statistically significant.  
I detected the same trend, when the PTF model was assessed manually (at –16% per 
period).  In practice, it is unlikely that an actuary would project an indefinite continuation 
of such strong negative ‘superimposed’ inflation.  

• Visually, the bootstrapping procedure and the Mack method do not do as good a job at a 
capturing the general shape of the ‘true’ distribution as they do for Process 1.  The ICRFS 
assessment doesn’t do a very good job either, but generally it is closer than the other 
assessments. 

 
Unconditional Likelihood of Mack Method 75th Percentile covering Insurance Liabilities -  
Process 2 
 
In practice, we would have only one triangle of claims history on which to base our analysis.  
Because the ‘distribution of the distributions’ assessed by the Mack method is skewed, one might 
pose the question, what is the unconditional likelihood that the 75th percentile point assessed under 
the Mack method will in fact prove adequate to cover the claims cost that emerges.  
 
This would be a much harder question to answer for Process 1 (where the distribution of possible 
outcomes depends on the history triangle).  However, for Process 2, it is possible to simulate many 
different history triangles that could have been observed, given the nature of the claims generating 
process I have set (each of which is associated with the same ‘true’ distribution for outstanding 
claims).  The result of the Mack method assessment can be determined for each history triangle.  
More general observations about how closely the Mack Method assessment mirrors the underlying 
distribution of possible outcomes for this process can then be made. 
 
Because of the formulaic nature of the Mack Method, it is possible to set up an automated process 
to take a very large number of simulations whereby claims history triangles are generated by 
Process 2.  For each simulation, the Mack method can be used in an automated fashion to set the 
central estimate, and to arrive at the risk margin targeting a 75% likelihood of sufficiency.  
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To assess the unconditional likelihood, 10,000 simulations were performed, where a history 
triangle was generated, and based on each of these, assessed the mean and 75th percentile of the 
distribution of possible claim outcomes using the Mack Method.  In this set of simulations: 
 
• The distribution of the distributions was confirmed as right-skewed. 

• 41% of the time, the location of the 75th percentile was understated 

• Based on analysis of a single random triangle (and in practice there will be only one history 
triangle per valuation class) the likelihood that the 75th percentile judged by the Mack 
analysis would be sufficient to cover the claims cost that actually emerges was 71%.  
 
This was calculated follows: 
 
Let  Mi =  75th percentile of the distribution of possible claims outcomes as assessed by 

the Mack Method for simulation i. 

     X =  the random variable describing the true outstanding claims liability (ie a 
single observation drawn from the distribution function described earlier).  

 
Then, the likelihood that a 75th percentile as determined by the Mack method will be 
sufficient to cover the cost of claims that emerges was calculated as: 
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The unconditional likelihood in this instance seems to below the desired level of 75%. 
 

 
3.4.6 Conclusions 

 
The main conclusion that I think can be drawn from the illustrations presented in this section are 
that one should not blindly apply the results of a mechanical, if statistical, analysis of variability.  
Most actuaries would agree that such an approach is rarely appropriate to set central estimates, but 
it seems to be quite common for risk margins to be set rather mechanically, based on something 
like the results of application of the Mack method, bootstrapping, or guidance provided in existing 
papers. 
 
Risk margin assessment requires as much judgemental input as the central estimate.  Where a 
quantitative method is used as an input, it is important to check that the assumptions underlying 
the method are verified, and a reasonableness check performed on the model structure.  An 
attraction of the ICRFS platform is that it isn’t possible to construct your model without 
simultaneously generating tests of fit.  Where other quantitative methods are used, tests of fit must 
be also be generated in order to check whether meaningful conclusions can be drawn from the 
analysis. 
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The task of risk margin assessment is not complete without considering risk of estimation error 
that is not captured by the quantitative analysis, and adjusting analytic results to take them into 
account.  I would argue that these risks are present in the majority of actuarial valuations.  The 
risks are associated with the potential sources of estimation error that are not associated with 
process variability.  They include items relating to the application of judgement, unidentified data 
issues, and data misinterpretation.   
 
An observation that I did not anticipate before going through this exploration exercise was the 
strong effect associated with bias arising from setting projection parameters based on an average 
of past observations, if the underlying distributions are right skewed. 
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4 Correlations and Diversification Benefit 

 
 
Where a company writes risks across a number of classes, it seems reasonable to anticipate that the 
values assessed to give a 75% likelihood of sufficiency for each class, when summed, will give an 
amount that has a greater than 75% likelihood of covering the company’s total Insurance 
Liabilities.  The reduction from this sum to arrive at the amount assessed to have a 75% chance of 
covering the company’s total Insurance Liabilities is called the diversification benefit. 
 
A diversification benefit can arise because there may be differences in the extent to which claims 
run-off experience deviates from the central estimate for different classes.   
 

4.1  ‘Direct’ and ‘Indirect’ Sources of Correlation 
 
Correlation, between how the amount ultimately paid compares to the central estimate for different 
classes can arise in two categories, that I have termed Direct and Indirect correlation, and defined 
below: 
 
1. Direct Correlation  - arising due to innate connections between cost drivers for different 

classes.  One way to think of this is as cost drivers that are outside of the insurer’s or 
actuary’s control once the business has been underwritten. 

2. Indirect Correlation  - connection between the adequacy of central estimates arising from 
other sources. 

 
If we were concerned only in the correlation between claims outcomes in an absolute sense, direct 
correlations would be our only interest.  However, because we are concerned about correlations 
between the adequacy of central estimates, the indirect correlations also come into play. 
 
Examples illustrate the distinction between direct and indirect correlation. 
 

4.1.1 Direct Correlation 
 
Direct correlation can itself be divided into two categories: 
 

Items affecting the events giving rise to a claim in the first place.   
 
An example of this might be the chance of a weather event such as a hailstorm occurring.  
To a degree, claims cost in say, home buildings and commercial fire classes will be 
associated because costs in both are likely be higher if such an event occurs.  
 
Items in this category are most important for correlation of Premium Liability outcomes.  
They should affect outstanding claims liabilities less, as whether or not such an event has 
occurred should be known and factored into the Outstanding Claims Liability estimate 
before the actuarial advice is finalised.  
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Environmental Items affecting the way claims liabilities run-off 

 
An example of this is the tort law reforms that have been implemented across different 
jurisdictions that, with some retrospective effect, have affected claims run-off patterns. 
 
A second example relates to the effect of the business cycle.  For instance, at times of 
economic downturn, claims under Directors & Officers policies tend to become more 
frequent.  Under the same economic conditions, return to work prospects for injured 
workers might be poorer, leading to increased workers’ compensation costs.    

 
Direct correlation arises from sources such as: 

 
• The tendency for economic cycles to have impact across a range of business classes 

• The tendency for the weather to impact across a range of business classes 
 
Direct correlation can be described without the need to refer to the central estimate, but direct 
correlation nonetheless has implications for the chance that estimates in different classes could be 
over-adequate together, or inadequate together. 
 
It ought to be possible to assess (past) direct correlation between classes by analysing industry 
statistics. 
 

4.1.2 Indirect Correlation 
 
Indirect correlation refers to sources of association between the adequacy of outstanding claims 
cost across different classes that arises from sources other than innate connections between cost 
drivers.  
 
An important source of, indirect correlation can be thought of as the Actuary- Effect.  Many 
sources of indirect correlation are related to sources of estimation error that are not related to 
process variability, and which are systemic in nature.  They have been described earlier and 
include: 
 
• Reliance on case estimates 

• Parameter selections that don’t recognise that for skewed distributions the average of past 
experience is likely to lie below the true mean (estimates not recognising that the mean is 
greater than the median) 

• Assumptions regarding the frequency of large claims (one of the more common and more 
crucial examples of the previous category) 

• Weight given to qualitative company advice regarding portfolio or claims management 
changes without sufficient scrutiny 

• Judgement overlays in parameter selection 
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For example, hypothetical Insurer XYZ might assert that its case estimation practice has 
been reviewed, and management of litigated claims is moved to a specialist area that aims 
to set more realistic estimates on these claims, and to settle the claims more quickly.  In 
this hypothetical example, the Approved Actuary will need to form a judgement regarding:  
 
• How to investigate and confirm the extent of these changes 

• How to incorporate allowance for this change by altering claim development 
assumptions and assumptions about rates of claim finalisation rate. 

 
It is unlikely that the judgement calls will be prove to be completely correct in hindsight 
when claims have run-off.  Consistent application of judgement increases the likelihood 
that if one class has been underestimated, other classes could be underestimated also.  

 
Another source of indirect correlation relates to changes in claims management procedures 
implemented across a range of classes that might affect their cost.  This could be planned ;in which 
case there may be an ‘Actuary Effect’ (as the actuary determines if and how projection 
assumptions should be altered) and also a chance that ‘true’ cost changes, could occur (the insurer 
would be hoping predominantly in the direction of savings).  On the other hand it could be 
unplanned. This might happen if a key claims manager resigned who had control over 
management of claims across a number of classes. 
 
Some actuaries have expressed the view that reserving strength is the subject of a cycle mirroring 
the Insurance cycle. (McCarthy & Trahair (1999)).  The view is that as insurance markets go 
through a cycle of hardening and softening, so too reserving levels seem to go through a cycle.  If 
this hypothesis is true, it could be another source of correlation impacting adequacy of reserves 
across a range of classes. 
 

4.1.3 Industry Analysis and Correlation Assessment 
 

Direct correlation effects are likely to be assessable with industry analysis.  An unfortunate 
property of indirect correlation is that its assessment is not really assisted by Industry analysis.   
 
Industry analysis consistent with the correlations of interest would involve appraisal, for a given 
Company, of the extent to which the estimated outstanding claims liabilities for different classes 
turns out to be too high or too low compared to the amount that is eventually paid.  Public data 
allowing an appraisal of this correlation for different companies does not exist.  If such data did 
exist, I suggest that it would reveal quite different correlations for different companies.  The reason 
for this is that the forces in play that give rise to indirect correlations will be specific to individual 
companies.   
 
For instance, for two companies, A and B, with similar portfolios, one would not expect to be able 
to draw reasonable conclusions about whether the actuary for Company A has overestimated 
Insurance Liabilities across a number of classes; based on a knowledge of that the Actuary for 
Company B did, if the Company B experience was say, in part a result of the actuary 
overestimating the impact of a change in case reserving methodology. 
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4.1.4 Factors Associated With the Strength of Indirect Correlations 

 
There are instances where indirect sources of correlation might be expected to be strong.  The 
instances can be characterised as those cases where the actuary applies judgement as part of the 
assessment of central estimates and risk margins with some element of consistency across classes.  
I would argue that it is reasonable to expect a given actuary’s judgement to be applied consistently 
across classes most of the time, especially for the particular case that is relevant to our interest, 
which is at a single valuation date, and for a single company. 
 
As well as judgement, there is also the matter of influence to consider.  This includes both overt 
and more subtle instances.  For example: 
 
• The influence of the actuary’s own past experience. 

• The influence of being cognisant of a situation where the Insurance Liability assessment 
might give rise to a reported capital adequacy position that is weak (either because the 
actuary knows without being told, or has this pointed out to them by company 
management).  Some actuaries will have experienced across the board pressure on their 
estimates where critical thresholds, such as loan covenant triggers loom. 

• The influence of not wanting to move too much from the previous basis in successive 
valuations. 

• Attitudes to the extent of the necessity to allow explicitly for superimposed inflation. 

• How motivated company management is to assist the actuary to arrive at their claim 
projection assumptions, and the actuary’s reaction to such assistance. 

 
It is my view that there will be many instances where indirect sources of correlation will be 
stronger than the direct sources.  Perhaps this will even generally be the case.  While they can’t be 
quantified, indirect correlation sources still need to be recognised when assumptions are set to 
quantify diversification benefits. 
 

4.2  Empirical Analysis that would support Diversification Benefit Assessment  
(And why it can’t be done). 
 
Assessment of diversification benefit is problematic.  Ultimately, like most aspects of Insurance 
Liability assessment, judgement inevitably plays a significant role. 
 
Even though pragmatically, objective quantitative analysis that would support a diversification 
benefit can’t be performed, it can still be useful to think through what the analysis would look like, 
to help conceptualise the problem.   
 
The illustration is in respect of two classes, but could be readily extended to a greater number.  To 
remove complications and remain focussed on the assessment of diversification benefits, the 
illustration assumes that business volumes and the general environment remain constant over time. 
 
Ideally, we would be in possession of the central estimate set at a large number of valuations for 
the two classes.  Some notation is helpful.  For the valuation performed in year i, let the central 
estimate for class A be Ai, and the central estimate for class B, be Bi.  
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We would also like to be in possession of information about the amount that was actually paid that 
the estimates Ai and Bi, aimed to cover (ie we would like claims run-off in respect of the past 
valuations is complete).  Let us call these values Ai

* and Bi
*  

 
If we had N such valuations, standalone risk margins MA and MB, could be empirically set8 by 
backsolving for MA and MB so that 
 

Ai
* > Ai x (1+MA) in only 25% of cases; and 

Bi
* >  Bi x (1+MB) in only 25% of cases. 

If the diversification benefit is expressed as a percentage reduction to the risk margin, we seek the 
value for ‘d’ that: 
 

Ai
* + Bi

*  > Ai x (1+MA(1-d)) + Bi x (1+MB (1-d)) in only 25% of cases. 
 
d would be obtained empirically by backsolving.   
 
The empirical risk margin and diversification benefit allowance determined in this way would take 
into account any central estimate bias, the sources of variability relevant to risk margin 
assessment, and the correlations. 
 
However, there are many (obvious) reasons why such an empirical study can’t be done, including: 

• A large number of observations will be necessary.  We will never be in a position to have 
enough data to look at the problem this way – particularly once it is recognised that we 
would like to be looking at the particular company under consideration. 

• Changes can occur to the business under consideration that renders the past less relevant.  
So even if we were in possession of a long history of how outcomes compared with prior 
estimates, we would not be in a possession of all of the information that we would like to 
have available, that would be of genuine assistance: 

eg. - Change to business volume 

 - Change in the characteristics of the risks covered within a class (underwriting or 
benefit changes; changes to claims handling; changes to propensity to claim) 

• Changes can occur to the valuation approach. 

eg. - The actuary may ‘learn’ from past experience. 

 - There may be a change in which actuary is doing the work. 

 - There may be improvements to the valuation approach 

 
Notwithstanding that we will only ever have a small set of data to review, it would be still be 
possible to review the track record of whether, when Insurance Liability estimates prove to be too 
low in one class, there are generally offsets from other classes where Insurance Liability estimates 
have proved to be too high.   
 

                                                 
8 provided we were satisfied we had a large enough number N, and that there would be no changes over the future run-
off period that had implications for risk margins. 
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Such a review can be done at annual intervals for short-tail classes.  The position with long tail 
classes is more complicated, since outstanding claims at any valuation will not have fully run off 
by the next. 
 
What can be done based on data analysis is very limited.  This presents a serious problem for 
actuaries who need to assess diversification benefit.  Any assessment will therefore be subjective.  
 
The allowance will be the conclusions drawn from a thought experiment that: 
 
• Frames the question we aim to solve by setting the diversification allowance. 

• Considers all of the relevant sources of correlation. 

• Converts this assessment into a diversification allowance. 
 
A reasonableness check of the assessment will then be required. 
 
 

4.3 Existing Guidance to Actuaries assessing Correlation and Diversification  
 
The two papers providing assistance to actuaries responsible for GPS210 assessments provide the 
following descriptions of their approach to assessing correlations between adequacy of Insurance 
Liability estimates for different business classes: 
 
Bateup & Reed: 
 

“To allow for diversification across lines of business, we subjectively selected an assumed 
correlation matrix between the net outstanding claims liabilities of certain lines of 
business.  The selected correlation matrix was based on our market knowledge and input 
received from senior actuaries practicing in the industry.” 

 
Collings & White: 
 

“Our qualitative assessment consisted of a survey of all of the experienced general 
insurance actuaries in our firm.  Each was asked to identify the degree of correlation 
between outstanding claims liabilities for ten different classes of business as either high, 
medium or low (and positive or negative).  Once the survey results were compiled, several 
meetings were held, during which survey results were discussed for each pairing of classes.  
Participants put forward their views as to the causes and extent of correlation and a 
consensus view was formed.” 

 
It is no surprise that the correlation coefficients incorporated in the advice set out in the papers are 
judgement based.  In my view there is no practical alternative to this.  What I do find surprising is 
the notion that any general guidance would be considered applicable to any particular company.  
Direct sources of correlation can be assessed across different companies, and conclusions and 
benchmarks determined.  However, it seems to me that indirect sources of correlation will 
typically be more important.  These sources of correlation are specific to individual company 
circumstances and are not amenable to ‘industry analysis.’ 
 
While the authors of the two papers may not have intended that their analysis be used as the 
definitive basis for diversification benefit assessment, considerable weight seems to be given to the 
suggestions set out in their papers.   
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From an audit perspective, an issue arises because the results set out in each paper results in a 
diversification benefit that, for companies with several classes of business, commonly more than 
halves the standalone risk margin.  This is often a highly material reduction to the balance sheet 
liabilities and its support is worth examining closely.   
 
Compared to the pre GPS210 environment, based on what I have seen, standalone risk margins do 
not seem to have risen, but diversification benefit recognition has become much more common.  
Typically the justification presented in written reports references the Bateup & Reed or Collings & 
White papers.  It is my suspicion that, overall, net of diversification benefit allowance, there would 
be many instances where risk margins have fallen compared to the pre-GPS210 environment.  It is 
also my suspicion that this is not an effect that APRA would have intended the new Prudential 
Standard to have. 
 
Examining the Assumptions in the Bateup & Reed and Collings & White papers 
 
Although ultimately, all sources of diversification are of interest, in this paper I have focussed on 
that between Outstanding Claims Liability adequacy across different classes.  This is firmer 
ground for actuaries than Premium Liability assessment; which is a new and developing area.  
However, I expect many of the points that I to be equally applicable to Premium Liability 
assessments. 
 
Both papers present results based on an assumed correlation matrix describing the association 
between the likelihood of adequacy of Insurance Liability assessments for different classes.  The 
assumed matrices are set out below. 
 
Bateup &Reed 
 
The table below shows the assumed correlation matrix applicable to the total variance (ie with 
correlations between systemic components reduced to allow for the fact that some components of 
variability are independent) in order to estimate the variance of the aggregate net outstanding 
claims liability for an insurer with multiple lines of business. 
 

 Liability CTP W’Comp Prof 
Indemnity 

Inwards 
Re 

Fire/ISR Motor House Other 

Liability          
CTP 25         
W’Comp 25 35        
Prof Indemnity 25 25 25       
Inwards Re 25 25 25 25      
Fire/ISR 0 0 0 0 5     
Domestic Motor 0 25 0 0 5 10    
H’holders 0 0 0 0 5 10 20   
Other 0 0 0 0 5 5 10 10  
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In effect, the matrix is set for an industry ‘average size’ portfolio, which (in $2001) is set as 
 

‘Industry Average’ Portfolio9 
Class 2001$m  

Liability 123 
CTP 313 
Workers’ Comp 88 
PI 57 
Fire/ISR 22 
Domestic Motor 26 
Householders  25 
Other 42 
Inwards Re 52 
  
Total 749 

 
 
Collings & White 
 
I find this paper less clear about whether the matrix it presents, is intended to relate to the systemic 
component of variability only.  Alternatively, it may have been reduced in a manner consistent 
with the Bateup & Reed presentation, in recognition that some sources of variability are 
independent.  If the presentation is after this reduction has been made, I don’t find the paper clear 
about the size of portfolio that the authors intend it to be appropriate for. 
 
For this reason, it isn’t clear to me whether the Collings & White presentation is directly 
comparable with that of Bateup & Reed.  If the presentation is in respect of the systemic 
component, without a reduction for the independent component of variability, then the values in 
the matrix would need to be reduced before making direct comparison with the Bateup & Reed 
presentation.  This detail may be important for those wanting to fully understand the assumptions 
underlying the paper’s recommendations, but it does not affect the general thrust of the comments 
that I have regarding the two sets of assumptions. 
 
The Collings &White correlation matrix is presented below: 
 

 Liability CTP W’Comp Prof 
Indemnity 

Marine Fire/ISR Motor House Other 

Liability          
CTP 25         
W’Comp 25 25        
Prof Indemnity 30 10 15       
Marine 0 0 0 0      
Fire/ISR 0 0 0 0 10     
Motor 0 0 0 0 10 20    
H’holders 0 0 0 0 10 40 20   
Other 0 0 0 0 10 20 30 20  
 

                                                 
9 Bateup & Reed (2001), Appendix D. 
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Comments on the Matrices 
 
The immediately striking thing about each matrix is the large number of zero elements. For these 
class combinations, this would seem to dismiss the possibility adequacy of Insurance liability 
estimates in these classes could be related due to things such as: 
 
• Reliance on case estimates. 

• The way large claims allowances are assessed, given they will be based on a small sample 
from a highly skewed distribution. 

• Parameter selections that might inadvertently reflect a median or mode, more so than a 
mean. 

• Consistent application of judgement across a range of classes. 
 
The zeros suggest that the indirect sources of correlation I have contended are important earlier in 
this paper, were either not considered, or were considered but assessed to be unimportant.  
 
In my opinion, it is quite difficult to accept this as a reasonable default position.   
 
It is easier to accept that the matrices include allowance for direct sources of correlation.  Looking 
at which entries are higher than others, intuitively they seem to make sense.  Where a common 
factor like the weather, or the position in the business cycle would be expected to have an effect on 
claims cost for two classes the entry in each matrix is higher. 
 
A complicating factor in assessing whether this forms a reasonable basis from which to estimate 
diversification in the adequacy of Insurance Liability estimates, is that; at least in terms of past 
events, the weather conditions will have been known.  The actuary would know whether the recent 
past experience included a storm that would be expected to increase the cost of claims in both ISR 
and home classes.  This knowledge should be an input to the Insurance Liability central estimates.  
However, the actuary will still need to estimate the cost associated with the event, and it is possible 
that adequacy of these estimates in different classes may be correlated.  Similarly, the position in 
the business cycle will typically be known when the Insurance Liability assessment is set.  With 
this source, the correlation of interest will more commonly arise where there is an unexpected 
movement along a business cycle path. 
 
This line of reasoning adds to my impression that it is the indirect sources of correlation that are 
most important to consider when assessing diversification benefits. 
 
Assessment of the non-zero entries (and any suggestion about alternative values describing the 
‘zero’ relationships) requires appreciation of the meaning of correlation coefficients of different 
magnitude. 
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4.4 Exploring the Meaning of Correlation Coefficients  

 
The strength of linear association described by a correlation coefficient of a given magnitude is not 
something that is necessarily easy to grasp naturally.  To assist, I have presented a series of charts 
that aim to illustrate its meaning. 
 
The first chart is a scatter-plot generated from 2,000 random observations of a bivariate normal 
random variable (X1, X2), where the marginal distributions for X1 and X2 each have mean 100, and 
standard deviation 20, and where the correlation coefficient of X1 and X2 is 0.00.  The random 
observations have been generated using the Excel add-in package @Risk.©  A second chart shows 
the equivalent plot, where the correlation coefficient of X1 and X2 is 0.25. 10  In each chart, each 
marker represents observation of a single pair.  The red line is the least squares line of best fit 
drawn through the scatter plot. 
 
 
 
 
 
 
 
 
 
 
 
A number of observations can be made from examination of the charts: 
 
• Visually, the degree of association implied by a 25% correlation coefficient seems quite 

weak to me. 

• For the special case where X1 and X2 have equal standard deviation, the slope of the least 
squares line of best fit equals the correlation coefficient.  This provides a degree of tangible 
interpretation of the meaning of correlation co-efficient.11 

• The coefficient of determination of the least squares line of best fit, r2, is the square of the 
correlation coefficient.  In a sense, the square of the correlation coefficient is a measure of 
the proportion of the variance of the variable X2 that is not ‘explained by’ variation in the 
outcome of X1.   

 
ie If  2X  equals the mean of the values of X2 in the scatter plot. Then, if we define for 

each ordered pair (X1, X2), a quantity X2’, being the point on the least squares line of 
best fit corresponding to X1, then it can be shown that: 

 
2

22
2

22
2

22 )'()'()( XXXXXX −+−=− ∑∑∑  
 

(Total)  (explained by model) + (not explained by model) 

                                                 
10 A co-efficient of variation of 25% is the Bateup & Reed ‘benchmark’ for public liability, workers compensation and 
professional indemnity portfolios outstanding claims liabilities of approximately $134m in current vales as at 2001. 
11 In the more general case, where the standard deviation of the marginal probability distribution functions are 

21,σσ , 
with 21 σσ ≠ , the slope of the line of best fit is 21 /σσρ × . 
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In our situation dealing with the degree of association between outcomes for two 
insurance classes, ‘explained by model’ represents variation in X2 that is anticipated 
due to variation in X1.  r2 represents that portion of the total variance, that is 
‘explained’ by (or is associated with) movement in X1 

 
ie 2

22
2

22
2 )(/)'( XXXXr −−= ∑∑  

 
The strength of association implied by correlation coefficients of different magnitude can be 
illustrated by means of a series of scatter plots.  Four examples are set out below, with values 
reflecting those in the correlation matrices.  A larger selection is set out in Appendix G. 
 
The scatter plots are generated by simulation using the excel add-in package @Risk.  Each plot 
represents observations of a pair of lognormal random variables with mean 100 and standard 
deviation 20, associated with a correlation coefficient of the stated magnitude.  Each dot represents 
a single simulation. 
 
2,000 simulated observations are shown in each plot.  The least squares line of best fit, and its 
associated r2 value is shown in each chart. 
 
My aim in presenting this series is to help actuaries who are trying to select assumptions for 
correlation between the likelihood of adequacy of outstanding claims liability estimates, and to 
allow some assessment of the correlation matrices set out in the two papers. 
 
One can interpret the charts as expressing the distribution of outcomes that might be possible for 
two classes each with a central estimate for the liabilities of 100, and standard deviation 20, where 
the correlation between the likelihood of adequacy of the estimate is expressed as a correlation 
coefficient of the stated magnitude. 
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 Correlation 10% y = 0.118x + 87.961
R2 = 0.0138
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In my view the strength of relationship associated with a correlation coefficients of 10% and 25% 
(which are the most common non-zero entry in the assumed correlation matrices) is quite weak.  
Without the assistance of the least squares line of best fit, visually they aren’t easy to distinguish 
from the zero correlation scatter plot.   
 
Looking at the scatter plots, it is not difficult to imagine that diversification benefits supporting a 
halving of standalone risk margins could be assessed to arise from having liabilities spread across 
a range of classes, if one accepts that the correlation between adequacy of insurance liability 
estimates is described these charts.  However, it is my view that likelihoods of adequacy for a 
given insurer would be considerably more closely related. 
 
Correlation Coefficients and Conditional Probabilities 
 
A second way of exploring the meaning of correlation coefficients involves examining conditional 
probability distributions.  For simplicity, this presentation is based on the bivariate normal 
distribution.   
 
Given the random variables X1 with mean 1µ  and standard deviation 1σ , and random variable X2 
with mean 2µ  and standard deviation 2σ ; if the correlation coefficient of X1 and X2 is ρ  and X1 
and X2 jointly have the bivariate normal distribution, then the conditional density of X1 given X2 is 
a normal distribution with:  
 
Mean   )()/( 22211 µσσρµ −××+ X ; and  

Standard deviation  )1( 2
1 ρσ −×  

 
The following set of charts show for two normally distributed random variables X1 and X2 each 
with mean 100 and standard deviation 20, and a given correlation coefficient: 
 
1. The original marginal probability density function for X1 (thin blue line) 

2. For a given observation of X2 (shown by the green vertical line) 

3. The conditional probability density function for X1 (the thicker red line) 
 
This can be easily set up on a spreadsheet, so as to explore various combinations of marginal pdfs.  
In practice, it is uncommon for actuaries’ to assume that claims cost outcomes are drawn from a 
normal distribution.  Nonetheless, this can still be a helpful way to explore the meaning of 
correlation coefficients of different magnitude.  
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The graph shows that, if originally we estimate that claims outcomes (for each of two classes) will 
be drawn from a distribution represented by the blue line, then if the outcome for one class is as 
shown by the green weight, then our revised estimate of the outcome for the related class is that it 
will be drawn from a distribution represented by the red line. 
 
In the case where the original distributions are normal with mean 100 and standard deviation 20, 
then if the correlation coefficient is 0.25, and the outcome in one class is 120, then our revised 
estimate is that the outcome for the second class will be drawn from a distribution with mean 105, 
and standard deviation 19.4. 
 
Another way to look at the strength of association is to note that, after observing the outcome of 
120 for the second class, the assessed probability that outcomes in the first class will exceed 100 
increases from 0.50 to 0.60. 
 
Similar charts are presented below, that look at how the conditional probability distribution moves, 
if the outcome in one class takes on different values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
X2 = 100 X2 = 140 
Conditional probability for X1 has:  Conditional probability for X1 has: 
Mean = 100; standard deviation 19.4 Mean = 110; standard deviation 19.4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
X2 = 180  
Conditional probability for X1 has:   
Mean = 120; standard deviation 19.4  
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These charts appear to confirm the impression gained from the scatterplots, that a correlation 
coefficient of 0.25 is not a strong degree of association.  Revised estimates of the outcome 
distribution for X1 are not greatly influenced by the outcomes we might see for the correlated 
variable X2. 
 

4.5 Summary and Conclusions 
 
I would like to be presenting an analytic solution to how diversification benefits should be 
objectively assessed.  However, the sources of correlation that will act to reduce diversification 
benefits are: 
 
• Particular to individual Insurer circumstances. 

• Particular to the different circumstances that surround reviews at different points in time. 

• Associated with judgement, which will vary over time, but will have some degree of 
consistency at any given review. 

• Not greatly assisted by industry analysis.  
 
In my view, from an analytic perspective, the problem is an intractable one.  The best that one can 
do is to go through the thought process of identifying sources of correlation that may be in play.  
This includes those that I have categorised as ‘direct’ and those that I have categorised as 
‘indirect,’ and think through how confident we can be about their effects.  This will include taking 
a step back and reviewing how each aspect of the review was conducted and what the risk points 
are with respect to items such as  
 
• Data veracity 

• The influence of company staff that have sought to assist our understanding 

• Where we have applied judgement 

• The risk that the approach to parameter selection risks bias 
 
It is worth reviewing whether, if prior year strengthenings have been required in a one class in the 
past, have there tended to be offsets from releases in other classes.  
 
In a framework where correlation matrices are used as the basis for the diversification benefit 
assessment, it is necessary for the actuary to reach a position where they are confident they 
understand the strength of association described by a given correlation coefficient. 
 
Ultimately, the position is similar, if less familiar, than the position with respect to the central 
estimate and the risk margin, with judgement inevitably being required and the end result being 
reviewed for reasonableness.    
 
The current papers guiding actuaries through diversification benefit assessment, result in a 
calculated diversification benefit that often reduces risk margins by 50% for an insurer writing 
across a range of classes.  I would question whether this should be regarded as a reasonable default 
position given that we can’t do work to verify with a reasonable degree of certainty that a benefit 
of this magnitude exists. 
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This section has presented the items that I think need to be considered in arriving at an assessment 
of what might impact adequacy of estimates across a range of insurance classes.  Many of them are 
not directly related to the nature of the risk that is insured, or correlations between cost drivers.  
The other sources are ones related to the valuation processes and the influences on them.  Both are 
important, and in my view, although it isn’t obvious which are the stronger, I suspect that for 
outstanding claims it is the indirect sources.  For premium liabilities direct correlation sources will 
probably play a bigger role. 
 
In such an environment it doesn’t seem reasonable to have as the starting position, that 
diversification benefits that will halve risk margins exist.  In audit support work, I have sometimes 
been challenged that if I don’t think diversification benefits of this order of magnitude exist, I need 
to demonstrate this.  I find it very difficult to accept the notion that if a view is taken that high 
diversification benefits exist, but can’t be demonstrated, it is up to me to show they are not there.  
 
APRA’s explicit recognition of diversification benefits in the prudential standards has had the 
effect of providing a new point at which (in some companies) management can pressure their 
actuaries to reduce their provision recommendations.  I would question whether this helps the 
GPS210 aim of ensuring the board’s of general insurers receive reliable advice about the extent of 
their Insurance Liabilities.  
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5 Observations & Conclusions 

 
The more significant conclusions that I have reached regarding GPS210 Insurance Liability 
estimates are: 
 
• The distinction between variability in claims outcomes in an absolute sense (process 

variability) and variability in the gap between claims outcomes and the actuarial estimates 
(a mixture of process variability and estimation error) is very important.  Failure to 
recognise this difference will generally result in a risk margin that is too low to satisfy its 
aim. 

• Quantitative methods used in practice to assess risk margins do not capture an important 
relevant component of variability.  In the paper, I have called this ‘estimation error not 
associated with process variability’.  For the reasons set out in this paper, I expect that 
sources of this variability are generally: 

- Significant 

- Systemic in nature 

- Correlated across Insurance classes 

• Diversification benefits derived from the formulae set out in the Bateup & Reed and 
Collings & White guidance to actuaries are highly material.  If we can’t do work to verify 
with a reasonable degree of certainty that a benefit of this order of magnitude exists, it 
doesn’t seem prudent, or even reasonable, to take the credit for it. 

• The nature of the insurance claims process; in particular the skewed nature of possible 
claims outcomes, gives rise to risk of central estimate understatement if one is not aware of 
the properties of samples from skewed distributions.   

• Checking model fit is important, both for central estimate determination and risk margin 
assessment.  

• Insurers will always be aiming to improve their underwriting and claims management 
practices.  It is unsurprising that they are keen for their actuaries to take the improvements 
into account before they are evidenced in claims outcomes.  It is difficult to justify taking 
such advice into account without being able to either verify it, or see it clearly evidenced in 
claims data.  Doing so risks underestimation. 

• It is not hard to see how an Insurance Liability assessment can be at risk of a triple 
whammy effect of central estimate understatement, risk margin understatement, and 
diversification benefit overstatement.  If this happens, the overall Insurance Liability 
estimate could fall well below the level required to provide a 75% likelihood of adequacy. 

• The Actuarial Control Cycle can assist in reviewing risk margins.  If in utilising the control 
cycle to review prior year claim cost estimates, what are supposed to be 1 in 4 year events 
seem to be more frequent than that, this could indicate a problem.   
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Appendix A 
 
Checks on Chain Ladder Fit 
 
This appendix sets out three tests that can be performed to verify whether assumptions underlying 
chain-ladder projections are met.  In my view, these tests should be performed before chain-ladder 
techniques are used to project claims experience, and before analytic techniques are used to 
provide input to Insurance Liability risk margin assessments, that assume a well fitting chain 
ladder model fits the claims history well.  The tests set out here have been based on those 
described by Mack (1994), and considering views expressed in Zehnwirth & Barnett’s unpublished 
paper “Claims Reserving – Should Ratios be Used.”   
 
Assumption 1 – Form of Model 
 
The Chain Ladder method estimates ultimate incurred claim costs for a given accident year i as the 
product of development factors for development periods j+1 to n, applied to the cumulative 
incurred claim costs at development period j.  The development factors are assumed to be 
independent of accident year.   
 
According to the model, the incremental claims cost in development year k, should vary around a 
constant multiple of the cumulative claims cost to the end of development period k-1. 
 
That is ; if Y = incremental claims cost in development period k; and 

X = cumulative claims cost to development period k-1; and 
Fk = the assumed development factor taking cumulative claims cost at the end of 

development period k-1 to cumulative claims cost at the end of development 
period k. 

 
The pairs of observations (X,Y) should fall randomly about a line with equation  
 
Y = (Fk – 1) X 

 
It is possible to check graphically whether this relationship seems to hold at each development 
period.  
 
An example from Process 2 is shown below.  The chain ladder estimate for the first development 
factor is 3.06.  This means that the estimate of the incremental claims cost in development 
period 1, is 2.06 times the (cumulative) developed cost to the end of development period 0.   The 
red line has equation y = 2.06x.  Observed points do not seem to vary randomly about this line (the 
least squares line of best fit is shown by the dashed line and actually has negative slope).  In 
practice, a chain ladder model would not be accepted as fitting this data. 
 
 
 
 
 
 
 
 
 

Test of Model Fit - First Development Factor
Process 2 - Triangle 4
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The form of the model should be assessed this way for each development period (where there are a 
reasonable number of observation points to assess). 
 
Assumption 2 (No calendar year effect) 
 
The chain ladder method assumes that development factors are independent of accident year.  In 
practice, calendar year effects such as changes in claims handling, case reserving, or superimposed 
inflation can lead to violation of this assumption.   
 
Qualitative tests include checking whether there had been changes with a calendar year effect such 
as changes to claims handling procedures, changes in case estimates setting procedures, and large 
movements in inflation rates. 
 
A more formal test is suggested in Mack (1994).  It is illustrated by example below (for Process 2 
triangle 4).  The test progresses as follows: 
 
Individual Chain ladder factors are determined, and at each development period, the median found. 
 
 
 
 
 
 
 
 
 
 
 
 
 
For each development period, the observed development factor is described as ‘L’ if it is above the 
median, and ‘S’ if it is below (and * if it is equal to the median). 
 
 
 
 
 
 
 
 
 
If there are no calendar year effects, each diagonal should have a roughly equal number of ‘L’ and 
‘S’ values. 
 
To test this, count the number of ‘L’ and ‘S’ factors in each diagonal. 
 
For example take the last diagonal, 

Number of ‘L’ factors = L(10) = 5 
Number of ‘S’ factors = S(10) = 3 

Development Period

Accident Ci1 Ci2 Ci3 Ci4 Ci5 Ci6 Ci7 Ci8 Ci9 Ci10
Period 1 2.421     1.216     1.238   1.401   1.050   1.030   1.036   1.008     1.009     

2 2.954     1.366     1.239   1.166   1.060   1.089   1.054   1.020     
3 1.778     1.585     1.103   1.062   1.117   1.028   1.026   
4 2.302     1.350     1.137   1.134   1.310   1.035   
5 5.398     1.538     1.189   1.215   1.063   
6 3.776     1.349     1.201   1.082   
7 3.563     1.332     1.359   
8 3.420     1.403     
9 4.406     
10

Median 3.420     1.358     1.201   1.150   1.063   1.032   1.036   1.014     1.009     

Ci1 Ci2 Ci3 Ci4 Ci5 Ci6 Ci7 Ci8 Ci9 Ci10
1 S S L L S S * S *
2 S L L L S L L L
3 S L S S L S S
4 S S S S L L
5 L L S L *
6 L S * S
7 L S L
8 * L
9 L

10
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Z9 = min(L(10),S(10)) = 3                             (the 9 indicating there are 9 observations to consider) 
 
If Z9 is significantly less than (L(10)+S(10))/2, then there is evidence of a calendar year effect.   
 
Mack (1994) describes an overall test that determines a test statistic based on all the calendar 
years, that can be tested to determine whether it is likely to have arisen by chance alone. 
 
The design of the test is based on the hypothesis that each development factor (that does not give 
rise to an *) has a 50% chance of being an ‘L’ and a 50% chance of being an ‘S’. 
 
For the example diagonal L(10) + S(10) = 8  
 

The probability that L(10) = m is    82
!)!8(

!8
mm−

  

 
So that the probability that m = 4 is 0.273438 
 
A table can be built up based on this to determine the probabilities of various values for Z9, Z8, Z7 
and so on 
 
For example, the probability that Z5 = 0 is 0.0625 

Z5 = 1 is 0.3125; and 
Z5 = 2 is 0.6250 

 
The overall test concerns Z = Z2 + Z3 + …Z9; based on the first two moments of the distribution 
for Z under the null hypothesis that there is no calendar year effect. 
 
The reader is referred to Mack (1994) for full details of the test. 
 
Assumption 3 – No correlation between successive development factors 
 
The chain ladder method assumes that across an accident year, the development factor experienced 
at a given development period is not affected by whether preceding factors have been particularly 
high or low.  
 
Mack (1994) suggests that this assumption can be tested based on a test known as Spearman’s 
Rank Correlation coefficient.   
 
The general nature of the test is illustrated here, based on the same triangle as previously. 
 
Considering the first and second development period development factors, we have eight pairs, 
that are set out in the next table.  The development factors are ranked for each development period 
in turn, from 1 for the lowest to 8 for the highest.  Other calculations for the test are shown in the 
table.  
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Accident Period F0 F1 A=Rank F0 B=Rank F1 C=A-B C2 
1 2.421129 1.215519 3 1 2 4 
2 2.954018 1.366152 4 5 -1 1 
3 1.777683 1.585133 1 8 -7 49 
4 2.301957 1.350070 2 4 -2 4 
5 5.398467 1.537619 8 7 1 1 
6 3.775807 1.349386 7 3 4 16 
7 3.562837 1.331617 6 2 4 16 
8 3.419639 1.403059 5 6 -1 1 

 
The Spearman Rank Correlation coefficient is defined by the statistic 
 

r* = ∑ −
−

)1(
61 2

2

NN
C  

 
where N is the number of pairs (ie here N= 8) 
 
If successive development factors are uncorrelated, the expected value of r* is 0, and its variance 
is 1/(N-1) .  For the example, the hypothesis that the successive development factors are 
uncorrelated would not be rejected. 
 
Mack suggests an adaptation of this test that results in a single test statistic that can be used to test 
whether, across the entire history triangle, successive development factors are uncorrelated. 
 
For full details of the suggested test, the interested reader is referred to Mack (1994). 
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Appendix B 
 
Mack Method 

What I have termed the Mack method in this paper is my interpretation of an assessment technique 
described by Thomas Mack in his 1994 paper “Measuring the Variability of Chain Ladder Reserve 
Estimates.”  
 
In the paper Mack explores the assumptions that implicitly sit behind the chain-ladder algorithm, 
where development factors Fk, that take cumulative cost from development year k to k+1 are 
estimated as 

Fk = ∑∑
−

=

−

=
+

kn

i
ji

kn

i
ji DD

1
,

1
1,  

Where  
Di,,j  represents the cumulative cost to the end of development year j from accident year I; and 
n   represents the total number of accident and development years in the claims triangle (which is 

also assumed to be the last development year in which claims cost will emerge). 
 
Mack advances the point that using the chain-ladder algorithm, with development factors assessed 
in this way implicitly assumes that: 

1. The claims process follows this model, and 

2. The selected estimator for Fk is the unbiased estimator of minimum variance. 
 
Mack highlights that this model therefore asserts: 

• E[Di,k+1|Di,k, Di,k-1,…Di,1]  = Fk x Di,k   

=> Same ‘underlying’ age-to-age’ development factor exists for all accident years, but 
with random variation around this point 

=> For a given accident year, at a given stage of development, it is only the most recent 
observed cumulative claims cost outcome that carries predictive power regarding 
future development amounts.  The chain-ladder is ‘memoryless’ in the sense that, for 
a particular accident year, the path taken to reach Di,k carries no predictive power – 
only the value Di,k does. 

=> No calendar year effect (such as would likely be violated if there was a change in 
claims management practice). 

• Development factors are independent of the accident year  

• Successive development factors are uncorrelated (ie after a rather high value of Di,k/ Di,k-1, 
the expected size of the next development factor Di,k+1/ Di,k is the same as after a rather low 
value of Di,k/ Di,k-1) 

• Var(Di,k+1/ Di,k|  Di,1 Di,2… Di,k) = 2
kα  / Di,k  where kα  is a factor that may depend on k, but 

not i.   13 

                                                 
13 For details on the reasoning behind this assertion, the reader is directed to Mack’s 1994 paper, in which he presents 
this as an implication of asserting that Fk is the estimator of the true value of the development factor that has minimum 
variance. 
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Mack asserts that these assumptions are strong and cannot be taken as met by every run-off 
triangle.  He also suggests tests that can be used to verify these assumptions.  Where the tests 
reveal that the implicit assumptions are not satisfied, he makes the point that the chain-ladder 
method should not be applied.  It would also follow that, in this circumstance, this method should 
not be used to assess variability. 
 
Mack then derives a formula to estimate the standard deviation of the outstanding claims liability 
estimate.  The formula is not straightforward to describe, and the interested reader is directed to 
Mack’s paper for its details, and example calculations. 
 
I would draw attention to the following: 
 
• The assessment of variability from the central estimate assumes that the chain-ladder 

method as specified has been used to arrive at the central estimate.  It would not be 
reasonable to attach meaning to the Mack Method result for variability if a different 
approach was used to set the central estimate. 

• Chain-ladder factors are assumed to be derived in a mechanical fashion as specified earlier 
(and this is OK, because before using the Mack method, tests will have been conducted to 
confirm that the method for deriving the chain-ladder factors is reasonable).  However, if  
judgemental adjustments are applied such as: 

- Removal of ‘outliers’ 

- Incorporating an observed trend 

- Only using the last few diagonals rather than the complete history triangle to derive 
assumptions, 

then it would follow that use of the Mack method would be invalidated. 

• If any of the assumptions underlying the assessment method are not satisfied, then in my 
view, meaning should not be attributed to the Mack method assessment of variability. 

• The result of Mack’s formula is a chain-ladder central estimate and an estimate of the 
standard deviation of possible claims outcomes.  For practical use for GPS 210 
assessments, an assumption is required for the distributional form of the variation in 
outcomes from the chain-ladder central estimate.  Mack suggests a lognormal distribution 
be assumed, where a distributional form is required.  No compelling reason is provided to 
support this suggestion; save that it has an intuitively appealing shape.  Other standard 
distributional forms with a similarly appealing shape can be found that would imply a 
higher value for the 75th percentile, for any given mean and standard deviation. 
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I would also draw attention to the following point made by Mack in his paper indicating that care 
must be taken when employing the chain ladder method: 
 
“The well known weak points of the chain-ladder method should not be concealed: These are the fact that 
the estimators of the last two or three factors Fn, Fn-1,.. Fn-2 rely on very few observations and the fact that 
the known claims amount Dn,1 of the last accident year (sometimes Dn-1,2 too) forms a very uncertain basis 
for the projection to ultimate.  This is most clearly seen if Dn,1 happens to be zero.  Then we have Di,n = 0 , 
(the estimate of the outstanding claims liability) Rn = 0, and (the standard error of the outstanding claims 
liability estimate) s.e.(Rn) = 0 which obviously makes no sense…. 
 
Thus, even if the statistical instruments developed do not reject the applicability of the chain ladder method, 
the result must be judged by an actuary and/or underwriter who knows the business under consideration.  
Even then, unexpected future changes can make all estimations obsolete.” 
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Appendix C 
 
Description of Bootstrapping Procedure 
 
This appendix describes the bootstrapping procedure used to estimate the distribution of possible 
claims outcomes set out in Section 3.3.  The process is described more fully by Bonnard R, 
Greenwood B and Greybe S (1998) in their paper “Bootstrapping reserve estimates”.  The 
description in this appendix is made with reference to the first example triangle generated from 
Process 2, as defined in the main body of this paper.   
 
Incremental and cumulative payments for the first example triangle are: 
 
Incremental 
 
 
 
 
 
 
 
 
 
Cumulative 
 
 
 
 
 
 
 
 
 
 
 
 
Chain Ladder factor Dt is determined as the ratio of the sum of payments associated with 
development year t+1, divided by the sum of payments associated with development year t. 
 
Eg 2.931 = (25,103 + 27,586 +…+37,905)/(8,691+12,284 + …+14,092) 
 
The Et factors represent cumulative chain-ladder factors 
 
4.530 = 1.545 x 2.931 
5.984 = 1.321 x 4.530, and so on. 
 
The chain-ladder central estimate is then determined based on the assessed development factors in 
the usual way.  For example, across accident year 10: 
 
Cumulative payments to the end of development period 2  = 2.931 x   9,823 = 28,794 
Cumulative payments to the end of development period 3  = 1,545 x 28,794 = 44,499; and so on. 

1 2 3 4 5 6 7 8 9 10
1 8,691         25,103       38,124      52,344       62,605     68,954     78,240     80,739     83,850     87,092       
2 12,284       27,586       45,996      55,151       62,391     66,517     71,273     73,217     77,198     
3 12,044       37,260       46,688      63,884       72,817     76,588     80,252     83,027     
4 7,823         22,064       31,908      43,897       55,384     56,389     57,756     
5 9,678         31,553       48,081      71,674       87,298     110,797    
6 8,520         20,684       54,684      68,463       79,892     
7 14,529       56,134       77,182      97,250       
8 10,190       28,526       42,014      
9 14,092       37,905       

10 9,823         

D1 D2 D3 D4 D5 D6 D7 D8 D9
2.931 1.545 1.321 1.183 1.114 1.071 1.031 1.046 1.039

E1 E2 E3 E4 E5 E6 E7 E8 E9
2.931 4.530 5.984 7.078 7.884 8.444 8.709 9.110 9.462

1 2 3 4 5 6 7 8 9 10
1 8,691        16,412      13,021     14,220        10,261       6,349       9,286       2,500       3,111       3,242        
2 12,284      15,302      18,410     9,155         7,240        4,126       4,756       1,943       3,981       
3 12,044      25,216      9,428       17,196        8,932        3,771       3,665       2,774       
4 7,823        14,241      9,843       11,990        11,487       1,005       1,367       
5 9,678        21,875      16,528     23,593        15,624       23,499      
6 8,520        12,163      34,000     13,779        11,429       
7 14,529      41,605      21,048     20,067        
8 10,190      18,336      13,488     
9 14,092      23,813      

10 9,823        
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This process gives rise to the following projection for cumulative payments: 
 
 
 
 
 
 
 
 
 
A pseudo cumulative ‘central estimate’ triangle is derived by assuming the last development 
period estimate of cumulative payments reflects the central estimate value, and working backwards 
based on the chain ladder factors.  The resulting ‘pseudo’ cumulative central triangle is: 
 
 
 
 
 
 
 
 
 
For instance, across accident year 1 from the left: 
 
‘Pseudo’ cumulative payments to the end of development period 1 = 87,092 / 9.462 = 9,204 
‘Pseudo’ cumulative payments to the end of development period 2 = 9,204 x 2.931  = 26,978; and 
so on 
 
By taking differences between successive cumulative values, the ‘pseudo’ cumulative central 
triangle can readily be transformed into a pseudo incremental central payment triangle: 
 
 
 
 
 
 
 
 
 
For instance, across accident year 1, pseudo-triangle incremental payments in development period 
2 are determined as 26,978 – 9,204 = 17,774.  
 
If Ci,,j represents actual incremental payments for accident year i and development year j, and Ci,j

* 

represents the ‘corresponding central (‘pseudo’) incremental payments; then if we define ji,ε  
values such that Ci,j = Ci,j

*  + ji,ε ;  the ji,ε  values can be considered as observed residuals that are 
indicative of the variability associated with the chain-ladder process generating claim payments. 

1 2 3 4 5 6 7 8 9 10
1 8,691         25,103       38,124      52,344       62,605      68,954     78,240     80,739     83,850     87,092       
2 12,284       27,586       45,996      55,151       62,391      66,517     71,273     73,217     77,198     80,182       
3 12,044       37,260       46,688      63,884       72,817      76,588     80,252     83,027     86,852     90,209       
4 7,823         22,064       31,908      43,897       55,384      56,389     57,756     59,570     62,314     64,723       
5 9,678         31,553       48,081      71,674       87,298      110,797    118,669    122,397    128,035    132,985      
6 8,520         20,684       54,684      68,463       79,892      88,984     95,307     98,300     102,829    106,804      
7 14,529       56,134       77,182      97,250       115,028     128,119    137,222    141,532    148,052    153,776      
8 10,190       28,526       42,014      55,502       65,648      73,119     78,315     80,775     84,496     87,762       
9 14,092       37,905       58,580      77,385       91,532      101,949    109,192    112,622    117,810    122,365      

10 9,823         28,794       44,499      58,784       69,530      77,443     82,945     85,551     89,492     92,951       

1 9,204 26,978 41,694 55,078 65,147 72,561 77,716 80,158 83,850 87,092
2 8,474 24,838 38,386 50,708 59,978 66,804 71,551 73,798 77,198
3 9,534 27,944 43,186 57,049 67,479 75,158 80,498 83,027
4 6,840 20,049 30,985 40,932 48,415 53,924 57,756
5 14,054 41,195 63,664 84,102 99,476 110,797
6 11,287 33,085 51,130 67,544 79,892
7 16,251 47,635 73,617 97,250
8 9,275 27,186 42,014
9 12,932 37,905

10 9,823

1 9,204 17,774 14,715 13,384 10,069 7,414 5,156 2,441 3,693 3,242
2 8,474 16,364 13,548 12,323 9,270 6,826 4,747 2,247 3,400
3 9,534 18,411 15,242 13,863 10,429 7,679 5,340 2,529
4 6,840 13,209 10,936 9,947 7,483 5,510 3,831
5 14,054 27,141 22,469 20,437 15,375 11,321
6 11,287 21,797 18,046 16,414 12,348
7 16,251 31,384 25,982 23,632
8 9,275 17,911 14,828
9 12,932 24,973

10 9,823
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The triangle of ji,ε  residual values is set out below 
 
 
 
 
 
 
 
 
For example  1,1ε = 8,691 – 9,204 = -513 
 2,1ε = 16,412 – 17,774 = -1,362 and so on. 
 
The estimate of the standard deviation of the residuals associated with development year j is 
determined as  
 

jσ = ∑
+−−

=−

)1,1min(

1

2
,

1 jnn

i
jie

jn
 

 
where n = the total number of development periods (here n = 10) 
 
For example, the estimate of the standard deviation of the residuals for development year 1 is  
 
1/9   x   {(-513)2 + (3,810)2 +    (0)2}  = 2,450    
 
Similarly, the estimate of the standard deviation of the residuals for development year 2 is 5,883. 
 
Standardised residuals are defined as sd

ji,ε  = 
j

ji

σ
ε ,  

 
The triangle of sd

ji,ε  values is set out below 
 
 
 
 
 
 
 
 
 
For instance, sd

1,1ε  = -513/2,450 = -0.209 
 
Bootstrapping proceeds by generating a series of ‘pseudo’ triangles of incremental payments, 
where the payment for accident year i development year j is Ci,j

*  plus a residual term.  The residual 
term is generated by pooling the standardised residuals and resampling them with replacement. 
Each time that a resampling of residuals takes place, the residuals are ‘unstandardised’ by 
multiplying by jσ . 
 

1 -513 -1,362 -1,694 836 192 -1,065 4,130 58 -582 0
2 3,810 -1,062 4,862 -3,167 -2,030 -2,700 10 -304 582
3 2,511 6,805 -5,814 3,333 -1,497 -3,908 -1,676 246
4 983 1,032 -1,092 2,043 4,004 -4,505 -2,464
5 -4,376 -5,265 -5,942 3,155 250 12,178
6 -2,767 -9,634 15,954 -2,635 -918
7 -1,723 10,222 -4,934 -3,565
8 915 425 -1,340
9 1,161 -1,161

10 0

1 2 3 4 5 6 7 8 9 10
1 -0.209 -0.232 -0.231 0.275 0.089 -0.154 1.405 0.209 -0.707 0.000
2 1.555 -0.180 0.662 -1.040 -0.940 -0.389 0.003 -1.088 0.707
3 1.025 1.157 -0.792 1.095 -0.693 -0.564 -0.570 0.879
4 0.401 0.175 -0.149 0.671 1.853 -0.650 -0.838
5 -1.786 -0.895 -0.809 1.036 0.116 1.756
6 -1.130 -1.638 2.173 -0.865 -0.425
7 -0.703 1.737 -0.672 -1.171
8 0.374 0.072 -0.183
9 0.474 -0.197

10 0.000
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For example, for one bootstrap loop, the sample of resampled residuals might be  
 
 
 
 
 
 
 
 
 
Because the re-sampling is with replacement, it is possible for a particular resampled residual to 
occur more than once.  For instance, the value –0.183 appears twice. 
 
The corresponding ‘unstandardised’ triangle of residuals is: 
 
 
 
 
 
 
 
 
For example the resampled residual for accident year 1, development period 1 is  
0.374 x 2,450 = 915 
 
The resampled residual triangle is added to the pseudo incremental central payment triangle to 
arrive at a ‘pseudo’ resampled triangle.  The pseudo triangle associated with this bootstrap loop is: 
 
 
 
 
 
 
 
 
For example, the entry for accident year 1, and development year 1 is 9,204 + 915 = 10,119 
 
Based on the standard chain-ladder methodology, a set of chain-ladder factors can be derived from 
the pseudo and applied to give a ‘pseudo’ central estimate projection. The cumulative ‘pseudo’ 
triangle, and the associated chain ladder factors corresponding to the example bootstrap loop 
triangle are shown below: 
 
 
 
 
 
 
 
 
 

1 2 3 4 5 6 7 8 9 10
1 0.374     -0.672 0.072 1.555 0.474 0.662 0.474 -0.180 1.405 0.474
2 0.116     0.209 -0.570 0.401 -0.231 0.275 -0.180 -0.865 0.116
3 0.838-     -0.389 -0.183 -0.838 -0.703 -0.149 0.662 -0.231
4 0.672-     -0.570 -0.149 0.275 0.474 1.737 0.209
5 0.707-     1.555 -1.088 -0.197 1.157 -0.838
6 1.756     -0.564 -0.183 0.116 -0.149
7 0.672-     0.662 0.662 1.405
8 1.786-     -0.838 1.853
9 0.232-     -0.809

10 0.183-     

1 2 3 4 5 6 7 8 9 10
1 915        -3,953 531 4,735     1,023     4,591   1,393   50-         1,155   -      
2 283        1,231 4,185-    1,222     498-       1,904   531-       242-       95        
3 2,053-     -2,291 1,340-    2,552-     1,519-     1,032-    1,947   65-         
4 1,646-     -3,352 1,092-    836        1,023     12,046 615      
5 1,732-     9,150 7,990-    601-        2,499     5,811-    
6 4,303     -3,316 1,340-    352        321-       
7 1,646-     3,895 4,862    4,277     
8 4,376-     -4,931 13,610   
9 567-        -4,760

10 447-        

1 2 3 4 5 6 7 8 9 10
1 10,119   13,822 15,246 18,120   11,092   12,005 6,549   2,391   4,848   3,242   
2 8,757     17,595 9,363 13,544 8,772 8,730 4,216 2,006 3,495
3 7,480     16,120 13,902 11,312 8,910 6,648 7,287 2,464
4 5,194     9,857 9,843 10,783 8,506 17,556 4,447
5 12,322   36,291 14,479 19,837 17,874 5,510
6 15,590   18,481 16,705 16,766 12,026
7 14,606   35,279 30,844 27,909
8 4,899     12,980 28,438
9 12,365   20,213

10 9,376     

10,119   23,941 39,187 57,306   68,399   80,403 86,952 89,343 94,191 97,432 
8,757     26,352 35,715   49,260   58,031   66,761 70,977 72,982 76,477 
7,480     23,600 37,502   48,813   57,723   64,371 71,658 74,122 
5,194     15,051 24,894   35,677   44,183   61,740 66,186 

12,322   48,613 63,092   82,929   100,802  106,312
15,590   34,071 50,776   67,542   79,568   
14,606   49,885 80,729   108,638  
4,899     17,879 46,317   

12,365   32,577
9,376     

D1 D2 D3 D4 D5 D6 D7 D8 D9
2.978 1.580 1.356 1.197 1.153 1.082 1.030 1.051 1.034
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The corresponding central estimate projection for the example bootstrap loop is set out below, 
along with the associated central estimate of the outstanding claims liability. 
 
 
 
 
 
 
 
 
 
 
Process variability is then modelled around the bootstrap central estimate.  At this stage of the 
simulation, the appropriate process distribution should be used if it is known.  Here, process 
variability is modelled in a similar way to which the pseudo history triangles are created.  The 
standardised residuals are resampled with replacement, and are then ‘unstandardised’ 
 
An example resampled standardised set of residuals is set out below: 
 
 
 
 
 
 
 
 
 
The corresponding ‘unstandardised’ residuals are set out below.  For example, the unstandardised 
residual corresponding to –0.940 in accident year 10 development year 2 is –0.940 x 5,883 = 
 -4,137. 
 
The total of the process variability residuals for each accident year is shown to the right of the 
triangle, with the grand total of –17,265 shown at the bottom of the column. 
 
 
 
 
 
 
 
 
 
 
The value of the outstanding claims liability associated with this bootstrap cycle is  
378,183 – 17,265  = 360,918 
 
This cycle is repeated many times to build up a picture of the distribution of possible claims 
outcomes as assessed by this method.

1 2 3 4 5 6 7 8 9 10
1 10,119   23,941   39,187   57,306   68,399   80,403 86,952 89,343 94,191 97,432 0
2 8,757     26,352   35,715   49,260   58,031   66,761 70,977 72,982 76,477 79,109 2,632     
3 7,480     23,600   37,502   48,813   57,723   64,371 71,658 74,122 77,932 80,614 6,491     
4 5,194     15,051   24,894   35,677   44,183   61,740 66,186 68,164 71,667 74,134 7,947     
5 12,322   48,613   63,092   82,929   100,802  106,312 115,065 118,503 124,593 128,881 22,569   
6 15,590   34,071   50,776   67,542   79,568   91,764 99,319 102,287 107,544 111,245 31,676   
7 14,606   49,885   80,729   108,638  130,008  149,934 162,278 167,127 175,717 181,764 73,126   
8 4,899     17,879   46,317   62,822   75,180   86,703 93,841 96,645 101,612 105,109 58,792   
9 12,365   32,577   51,469   69,810   83,542   96,346 104,278 107,394 112,914 116,800 84,222   

10 9,376     27,921   44,112   59,831   71,600   82,574 89,372 92,043 96,773 100,104 90,728   

378,183  

1 2 3 4 5 6 7 8 9 10
1
2 0.209    
3 0.149-    1.756    
4 0.838-    0.707-    0.474    
5 1.638-    1.025   0.671   0.650-     
6 0.425-    1.786-    1.171-    0.180-    0.231-     
7 1.130-    0.693-    0.003   0.425-    1.025   0.232-     
8 0.792-     1.756    0.154-    0.116   1.638-    0.149-    0.209-     
9 0.838-    0.895-     1.638-    1.555   0.879   0.838-    1.638-    2.173    

10 0.940-     0.149-    0.662     0.401    0.231-    0.209-    0.879   0.564-    1.737    

1 2 3 4 5 6 7 8 9 10
1
2 -       -        
3 1,445   -       1,445     
4 50-         126-       -       177-        
5 2,379-    59-         582      -       1,856-     
6 1,251-    1,099   158-       1,787   -       1,477     
7 3,538-    1,368-    4,130   393      736-       -       1,119-     
8 270        426-       4,903   537-       59-         582-       -       3,570     
9 5,164-    3,167-     3,754    1,600-    5,253-    246      900      -       10,285-   

10 4,137-     7,990-    3,155     1,933-    -      452-       242-       1,279   -       10,320-   

17,265-   
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Appendix D 
 
Overview of Modelling Zehnwirth’s PTF Family with the ICRFS-Plus Package 
 

This appendix provides a brief introduction to how estimates of the outstanding claims 
liability are made using Zehnwirth’s probabilistic trend family (‘PTF’) model, as it is 
implemented in the statistical reserving tool ICRFS-PlusTM. (‘ICRFS’).  The appendix is 
aimed at those unfamiliar with the model, or the ICRFS reserving tool.  For a definitive 
description, the interested reader is referred to Barnett and Zehnwirth (2000), and the ICRFS 
manuals. 
 
The PTF models assume that incremental claims cost follows heteroscedastic lognormal 
distributions that follow a piecewise loglinear structure. 
 
i.e. 
 

y w d w j
j

d

t
t

w d

( , ) = + + +
= =

+

∑ ∑α γ ι ε
1 2

 

 
 

 
Where p w d( , )  Denotes the incremental cost in the loss development array 

corresponding to accident period w  and development period d  
 ),( dwy  = Log( ),( dwp ) 
 dw +  = Payment period 
 α w   = A parameter capturing the effect of the relative claims level 

associated with a given accident period w (typically an exposure 
measure)  

 γ j   = A parameter capturing the effect of a change in trend in the claims 
level across development periods at a given development period j.  

 
 ιt  = A parameter capturing the effect of a change in trend across 

transaction periods at a given transaction period t.  
 ε  = The term capturing the modelled variability about the trends. It has 

a normal distribution with mean 0 and variance σ 2   (after 
adjustment to remove heteroscedasticity) 

 
 Modelling with the PTF family involves fitting a piecewise linear set of normal regression 

equations to the logarithms of the observations.   
 

ICRFS provides a range of diagnostics which determine whether a given model provides a 
reasonable fit to the claims data, that would imply it is suitable for projecting the run-off of 
the outstanding claims liability. 
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Typically, data would be inflation adjusted prior to commencing the modelling, and 
exposure information would be entered directly as a valuation input.  Modelling progresses 
through an iterative cycle: of  

 
• Model identification (selecting where you think parameters indicating trend 

changes may be warranted) 

• Model estimation (where ICRFS calculates model parameters consistent with 
your selections) 

• Testing model assumptions by:  

- Reviewing residual plots to check that the residuals around the model 
are approximately normally distributed and of equal variability; and that 
no systematic pattern exists. 

- Reviewing the statistical significance of parameters (and removing those 
that are nor statistically significant) 

- Reviewing goodness of fit measures (and considering parsimony) 
 
• Performing validation and stability analyses 

Once a satisfactory model has been identified, a separate functionality that is built into 
ICRFS called PALD can be used to determine the probabilistic distribution of possible 
claims outcomes that is consistent with the model.   
 
Modelling Process for the Illustrations in this Paper  
 
In practice, there should be substantial input to model construction.  For example, based on 
knowledge of the business and the environment, it is likely that the actuary will have an 
expectation regarding points at which trend changes will be identified.  It is also important 
that the final model is sensible from a qualitative perspective.  (For instance a model that did 
not include run-off in the far tail would not be accepted, no matter how well it fit the data).   
 
However, for the purpose of illustration in this paper, modelling was performed more 
mechanically, using a functionality that is built into the program. 
 
Model structure was determined by backward elimination of insignificant parameters, with 
significance determined by T-ratios using the in-built ICRFS model optimisation method. 
First, insignificant changes in trends and levels were removed.  Insignificant trends were 
then set to zero, and finally smoothing was done on accident year parameters. 
 
Reasons for adopting this approach, notwithstanding that it is open to sound theoretical 
objections, and some further comments on it are set out in the main body of the paper. 
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Modelling Process for general use of ICRFS to fit PTF models  
 
Model Identification 
 
Standardised residual plots across development, accident and payment periods are examined 
visually to identify any non-randomness.  An equivalent plot charting the standardised 
residuals by size of the fitted value is also available for review.  In the example below, the fit 
is unsatisfactory.  For example across development year, residuals are predominantly 
positive at early development periods and negative toward later development periods.  

Wtd Std Res vs Dev. Yr

0 1 2 3 4 5 6 7 8 9

-3
-2.5

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

Wtd Std Res vs Acc. Yr

94 95 96 97 98 99 00 01 02 03

-3
-2.5

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

Wtd Std Res vs Cal. Yr

94 95 96 97 98 99 00 01 02 03

-3
-2.5

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

Wtd Std Res vs Fitted

8 8.5 9 9.5

-3
-2.5

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

 
Based on where trends in residual patterns appear to start, and any knowledge of the 
underlying business, periods are identified, at which additional parameters could be 
considered.  

Model Estimation 

ICRFS calculates parameter estimates based on the user’s selection for where they think 
parameters should be considered, and replots the residuals.  An example is shown below of 
what the residual plots might look like after this is done.  Visually, the plots appear more 
satisfactory, with far fewer departures from the assumption that residuals are independent 
observations of a standard normal random variable.  
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At this point, some of the incorporated parameters may not be statistically significant.  
ICRFS provides a series of T-test results that check for statistical significance.  Generally, 
parameters would be removed and the model re-estimated, if these tests indicated non-
significance.   
 
A screen shot showing how the residual plots might look after this process has been 
completed is set out below.  At face value, the plots look less satisfactory than the previous 
plots, but the underlying model is better in the sense that it does not arrive at a ‘better 
looking’ fit by including non-significant parameters.  
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Heteroscedasticity Adjustment 

A key assumption in the model is that the (log) residuals are independent, identically 
distributed normal random variables.  Among other things, this means that the residuals 
should have constant variability around the fitted trends.  
 
The ICRFS interface includes graphical tools that allow heteroscedasticity that would violate 
this assumption to be identified and adjusted for.  The constant variation assumption is often 
violated because payments display a higher degree of volatility in the tail.  Adjustment 
parameters can be included in the model to allow for changes in the variance.  With the 
ICRFS interface, it is easiest to make this adjustment by development period.  
  
The process by which this is done is similar to that described for the other model parameters.  
Screenshots set out below show some of the visual aids in ICRFS that help with this process.  
The residuals by development period are shown on the left.  The aim is to identify periods at 
which there is a change in residual spread.  The right hand chart shows the estimated 
variance consistent with your model. 
 
At this point the model assumes constant variance across development periods.  Examination 
of the residual plot doesn’t provide obvious evidence of heteroscedasticity, and in this 
instance, adjustment for heteroscedasticity doesn’t seem to be warranted. 

Wtd Std Res vs Dev. Yr

0 1 2 3 4 5 6 7 8 9

-2.5
-2

-1.5

-1
-0.5

0

0.5
1

1.5

MLE S2 Quantiles vs. Dev. Yr

Log (truncated below 0.00011) - Linear Plot
0 1 2 3 4 5 6 7 8 9

0.07
0.075

0.08
0.085

0.09

0.1

0.11
0.12
0.13
0.14

 
 
Competing well fitting models (Parsimony) 
 
In a choice among competing models, other things being equal the simplest is preferable.  
 
Under-parameterisation risks not capturing important features of the underlying claims 
process.  Over-parameterisation, on the other hand risks fitting what is actually just a random 
component of experience.  An over-parameterised model will lead to high prediction errors 
and is therefore undesirable.  
 
ICRFS provides a series of statistics that can be used to allow parsimony considerations to 
be taken into account when selecting a model.  Some of these include: 
 
• Akaike’s information criterion (a statistic that increases with the number of fitted 

parameters, and decreases with log likelihood) 

• Baye’s information criterion (similar to Akaike’s information criterion, but with a 
different way of setting the parameter penalty) 

• SSPE – sum of squares prediction error (which looks at ‘one-step ahead’ prediction 
errors) 
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Generally, low values for SSPE, AIC, and BIC are preferable to high ones.  However, other 
aspects of model testing and fitting such as the significance of selected parameters, and the 
fit of the distributional assumptions mean that these criteria are not the be all and end all 
when deciding on a final model. 

 
Normality Test 
 
The model assumes that the standardised residuals have a normal distribution.  This 
assumption can be tested.  A screenshot of the component of ICRFS that illustrates this 
check is provided below.  In this example, the likelihood that a claims history that followed 
the assumptions of the model will give rise to a pattern of standardised residuals less normal 
than what is observed is about 1 in 8.  The fitted model is not great based on this test, but 
would not be rejected at a 5% significance level.  
 

Wtd Res Normality Plot
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Qualitative Overview 
 
An important step in the modelling process is that it makes sense in terms of known features 
of the underlying business.  An apparently well fitting model would not be accepted if it 
failed a qualitative review of sensibility. 

Model Validation 
 
This step analyses the change in the level and variability of the central estimate if the last 
diagonal in the triangle is removed, and parameters are re-estimated based on the remainder 
of the data triangle.  The projection is then performed based on the new parameter estimates.  
This step could be repeated by removing the diagonals one by one (until the remaining data 
is too sparse for the results to be meaningful).  
 
Generally speaking, a model that displays high stability would be preferred over a model 
that produces high variability under the validation procedure. 
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Predictive distribution associated with the fitted model 
 
ICRFS includes functionality it terms ‘PALD’ that can be used to assess the predictive 
distribution of claims outcomes consistent with the selected model.  PALD samples from the 
given model, which defines a joint distribution of correlated lower triangle cells, each 
lognormally distributed with its own mean, standard deviation and correlation with other 
cells.  Each individual sample is a complete lower triangle, which in turn yields an 
outstanding claims liability total. Repeated sampling of values of outstanding claims totals 
forms the distribution of interest. 
 
ICRFS allows selective inclusion of parameter uncertainty in forecasting and estimation.  
Parameter uncertainty is usually included in this exercise because it is the full predictive 
distribution that is of practical interest in setting reserves.  

 
The result presentation described as the ‘kernel’ would usually be the preferred distribution 
to be used as the assessed predictive distribution associated with the fitted model. 
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Appendix E 
 
Detail of the Assessed Claims Generating Processes 
 
Description of Claims Generating Process 1 
 
The first example assesses a claim triangle generated from a process that aims to reflect many of 
the assumptions that underlie the chain-ladder assessment method. 
 
The process is defined as follows: 
 
Let Ci,j = the incremental payment arising from accident year i, and paid in development year j. 

Let Di,j = the cumulative payments arising up to the end of development year j from accident year i 
(ie Di,j = Ci,1 + Ci,2 +…+ Ci,j). 

Let Fi,j  = the chain ladder factor that when multiplied by Di,j gives the expected value of Di,j+1. 

Let E[Di,j+1|Di,j] equal the expected value of Di,j+1 given the observation Di,j. 
 
Ci,1 =  Di,1 is a random drawing from a lognormal distribution with mean 30,000 and standard 

deviation 20,000.   
 
E[Di,j+1|Di,j] = Fi,j x Di,j     
 
and 
 
Di,j+1|Di,j = Fi,j x Di,j + 1, +jiε  
 
So Ci,j+1 = Di,j+1 – Di,j 
 
I have set the ‘error’ term 1, +jiε  associated with Di,j+1 as a random observation from a translated 
lognormal distribution.  Before translation, I have set the lognormal distribution to have: 
 
• Mean equal to 80%14 of E[Ci,j+1|Di,j] and  

• Standard deviation equal to 60% x E[Ci,j+1|Di,j].  
 
This distribution is translated so the expected value of 1, +jiε  is zero.  The aim in setting the error 
term is that it has: 

• Constant coefficient of variation over all development periods where a claim projection 
will be required, and  

• Standard deviation that is proportional to the expected value (ie proportional to 
E[Ci,j+1|Di,j]. 

                                                 
14 Readers who try to determine the purpose of this factor should note that in my view it neither adds to nor detracts 
from the analysis.  It is just a remanent from modelling work that I did as exploration associated with this paper. 
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The true underlying chain-ladder factors Fi,j that I have applied are:   
 

Process 1 – Chain Ladder Factors 
Development 

Period (j) 
0 1 2 3 4 5 6 7 8 

Fi,j 3.000 1.650 1.300 1.200 1.080 1.060 1.040 1.020 1.005 
 
A feature of this process is that observations at later development periods are contingent on the 
cumulative experience for the accident year to the prior development period. 
 
Example Incremental Triangle Generated by Process 1 
 
An example of a development triangle of incremental claim payments, the associated cumulative 
claim payment triangle, and triangle of paid claim development factors for a single simulation 
generated from the first process is set out below.  
 
Example Incremental triangle Generated By Process 1 
 
 
 
 
 
 
 
 
 
 
 
Cumulative triangle 
 
 
 
 
 
 
 
 
 
 
 
 
Chain Ladder Factors 
 
 
 
 
 
 
 
 

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 22,273   20,778   16,189 19,297   13,508 18,324 7,221   1,785   1,021   499       
2 24,963   65,139   26,986 47,491   24,474 5,968   6,770   5,660   2,362   
3 15,495   49,186   44,560 19,004   20,602 14,620 6,412   6,453   
4 14,965   14,346   10,400 13,644   6,803   3,912   4,228   
5 24,794   34,038   36,031 45,033   20,385 12,014 
6 10,497   40,382   26,287 11,640   18,634 
7 31,723   51,537   26,320 25,016   
8 23,096   33,450   20,109 
9 28,574   23,687   

10 16,552   

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 22,273      43,051      59,240        78,537        92,045        110,369    117,589    119,374    120,395    120,894     
2 24,963      90,102      117,087      164,579      189,053      195,021    201,791    207,451    209,814    
3 15,495      64,681      109,241      128,245      148,847      163,467    169,879    176,332    
4 14,965      29,311      39,711        53,355        60,158        64,069      68,297      
5 24,794      58,832      94,863        139,896      160,281      172,295    
6 10,497      50,879      77,166        88,806        107,440      
7 31,723      83,260      109,580      134,595      
8 23,096      56,546      76,656        
9 28,574      52,261      

10 16,552      

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 1.933     1.376    1.326     1.172   1.199   1.065   1.015   1.009   1.004    
2 3.609     1.300    1.406     1.149   1.032   1.035   1.028   1.011   
3 4.174     1.689    1.174     1.161   1.098   1.039   1.038   
4 1.959     1.355    1.344     1.127   1.065   1.066   
5 2.373     1.612    1.475     1.146   1.075   
6 4.847     1.517    1.151     1.210   
7 2.625     1.316    1.228     
8 2.448     1.356    
9 1.829     

10
2.693     1.434    1.298     1.160   1.084   1.046   1.028   1.010   1.004    
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The claims generating process that I have set comes across as being quite complicated.  The 
following example relating to accident period 5 in the above set of triangles should help to explain 
it. 
 

C5,1 = D 5,1 (development period 1 in the incremental and cumulative triangle) = 24,794.  This is a random 
observation from a log-normal distribution with mean 20,000 and standard deviation 10,000.   
 
C5,2 is 34,038 (the corresponding value in the second triangle is D5,2 is 58,832 = 34,038 +24,794) 
This value is generated as follows: 
 
• The expected value for D5,2 given the observation of D5,1 is 3.00 x 24,794 = 74,382.   
• The corresponding expected value for C5,2 is 74,382 – 24,794 = 49,588. 
• C5,2 is 49,588 + a random element 
• The random element associated with C5,2 is a random observation from a lognormal distribution 

with  
- mean  80% x 49,588 = 39,670 
- standard deviation  60% x 49,588 = 29,753 
translated by subtracting  39,670 so that the expected value of the random element is zero. 

 
For any given claims history triangle, the process completely describes the probabilistic 
distribution of possible claims outcomes. Though it would be very complicated to describe 
analytically, it is straightforward to determine the outcome distribution by simulation. 
 
The distribution of possible claims outcomes is dependent on the last diagonal of the simulated 
claims history triangle.  Consequently, each example of a claims history that is generated based by 
this simulation is associated with its own ‘true’ distribution of possible outcomes.  This is an 
unavoidable consequence of constructing a claims process that follows chain-ladder assumptions.  
In contrast, the second process described below has a ‘true’ distribution of possible claims 
outcomes that is independent of the particular outcome of a given simulation.  
 
 
Description of Claims Generating Process 2 
 
The second process generates payments as a random selection from a series of lognormal 
distributions.  The distributions are a function of development year, but are independent of 
accident year.  Outcomes for a given development year are modelled as independent from other 
development years. 
 
The process, and an example incremental and cumulative triangle are described below.  I have also 
illustrated the individual incurred claim development factors associated with the example.   
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Process 2 
 
If X is the lognormal random variable representing the claims outcome for a particular accident 
and development year, then, if µ  and σ  refer to the mean and the standard deviation of the 
normally distributed random variable Y  such that  Y = log X 
 
Then, if Ci,j = the incremental payment amounts arising from accident year i, and paid in 

development year j 
 
and  Yi,j = log (Ci,j) 
 
Then under the claims generating process I have defined, Yi,j values are independent random 
variables drawn from a normal distribution with mean jµ  and standard deviation jσ , where these 
parameters have the values set out in the next table.  The table also shows the mean, standard 
deviation, and coefficient of variation for the resultant lognormally distributed Ci,j variables. 
 
 

Process 2 
Development 

Period j 
Ci,j 

Mean 
Ci,j Std 

Deviation 
Ci,j CV15 

% 
jµ  jσ  

0 12,000 3,600 30 9.3496 0.29356 
1 24,000 8,400 35 10.0820 0.33994 
2 20,000 9,000 45 9.8113 0.42942 
3 16,000 8,800 55 9.5482 0.51409 
4 10,000 7,000 70 9.0110 0.63149 
5 8,000 6,400 80 8.7398 0.70335 
6 5,000 4,500 90 8.2205 0.77208 
7 4,000 4,000 100 7.9475 0.83255 
8 3,000 3,300 110 7.6099 0.89050 
9 2,000 2,400 120 7.1549 0.94446 
      

 
 
 
A feature of this process is that, across an accident year, what has occurred in previous 
development periods carries no explanatory power.  This is in sharp contrast to one of the chain-
ladder assumptions, namely that what has occurred up until the immediately preceding 
development period for the accident year is the only explanatory variable that should be use to 
project claims run-off experience. 
 
An example of a development triangle of incremental claim payments, the associated cumulative 
claim payment triangle, and triangle of paid claim development factors for a single simulation 
generated from the process is set out below.  
 

                                                 
15 CV = coefficient of variation 
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Example Incremental triangle Generated By Process 2  
 
 
 
 
 
 
 
 
 
 
 
 
Cumulative triangle 
 
 
 
 
 
 
 
 
 
 
 
 
Chain Ladder Factors 
 
 
 
 
 
 
 
 
 
 
 

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 8,691     16,412   13,021 14,220   10,261 6,349   9,286   2,500   3,111   3,242    
2 12,284   15,302   18,410 9,155     7,240   4,126   4,756   1,943   3,981   
3 12,044   25,216   9,428    17,196   8,932   3,771   3,665   2,774   
4 7,823     14,241   9,843    11,990   11,487 1,005   1,367   
5 9,678     21,875   16,528 23,593   15,624 23,499 
6 8,520     12,163   34,000 13,779   11,429 
7 14,529   41,605   21,048 20,067   
8 10,190   18,336   13,488 
9 14,092   23,813   

10 9,823     

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 8,691     25,103   38,124 52,344   62,605 68,954 78,240 80,739 83,850 87,092  
2 12,284   27,586   45,996 55,151   62,391 66,517 71,273 73,217 77,198 
3 12,044   37,260   46,688 63,884   72,817 76,588 80,252 83,027 
4 7,823     22,064   31,908 43,897   55,384 56,389 57,756 
5 9,678     31,553   48,081 71,674   87,298 110,797
6 8,520     20,684   54,684 68,463   79,892 
7 14,529   56,134   77,182 97,250   
8 10,190   28,526   42,014 
9 14,092   37,905   

10 9,823     

Chain Ladder Factors 2.931 1.545 1.321 1.183 1.114 1.071 1.031 1.046 1.039

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 2.888     1.519    1.373     1.196   1.101   1.135   1.032   1.039   1.039    
2 2.246     1.667    1.199     1.131   1.066   1.072   1.027   1.054   
3 3.094     1.253    1.368     1.140   1.052   1.048   1.035   
4 2.820     1.446    1.376     1.262   1.018   1.024   
5 3.260     1.524    1.491     1.218   1.269   
6 2.428     2.644    1.252     1.167   
7 3.864     1.375    1.260     
8 2.799     1.473    
9 2.690     

10

Avg 2.931 1.545 1.321 1.183 1.114 1.071 1.031 1.046 1.039
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Process 1 Triangles 
 
The 12 randomly generated triangles for Process 1 that were used to provide the illustrations set 
out in Section 3.4 and Appendix F are set out below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 22,273   43,051   59,240   78,537   92,045   110,369 117,589 119,374 120,395 120,894
2 24,963   90,102   117,087  164,579  189,053  195,021 201,791 207,451 209,814
3 15,495   64,681   109,241  128,245  148,847  163,467 169,879 176,332
4 14,965   29,311   39,711   53,355   60,158   64,069 68,297 
5 24,794   58,832   94,863   139,896  160,281  172,295
6 10,497   50,879   77,166   88,806   107,440  
7 31,723   83,260   109,580  134,595  
8 23,096   56,546   76,656   
9 28,574   52,261   
10 16,552   

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 18,092   47,250   69,722   84,648   124,648  135,084 144,028 147,950 150,546 151,186
2 15,449   59,084   94,451   122,327  138,478  143,393 149,807 155,801 157,682
3 17,013   39,613   76,848   115,979  147,358  152,761 161,981 172,712
4 7,878     20,980   55,218   65,282   94,257   102,751 107,560
5 20,739   71,403   96,482   122,426  139,730  144,700
6 26,474   92,462   141,527  206,516  241,107  
7 14,138   28,616   43,491   54,332   
8 19,913   111,528  157,014  
9 14,258   43,118   
10 17,930   

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 26,554   74,786   142,171  166,726  183,752  191,146 207,786 213,922 216,419 218,248
2 11,434   33,776   60,868   72,340   90,470   101,030 105,249 108,362 109,238
3 8,384     18,549   26,902   31,591   34,856   36,747 37,581 39,787 
4 20,065   49,760   94,616   117,055  138,359  143,596 151,045
5 21,070   71,520   114,100  146,384  175,917  187,410
6 10,920   28,435   37,214   45,480   52,985   
7 23,461   61,365   101,737  143,908  
8 14,196   50,699   120,024  
9 13,052   57,991   
10 20,298   

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 10,559   31,740   43,258   65,466   75,603   79,286 81,781 83,490 84,870 85,090 
2 18,909   36,996   50,021   60,039   71,606   75,453 79,043 80,853 83,606 
3 8,031     15,172   25,482   29,608   31,973   34,358 38,068 38,853 
4 17,943   46,280   68,557   109,263  130,888  148,598 163,736
5 23,517   50,262   91,002   114,765  155,718  163,634
6 12,659   49,864   103,753  121,226  147,917  
7 34,778   73,242   114,034  130,968  
8 14,580   30,892   41,001   
9 15,209   31,251   
10 15,062   
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Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 14,597   48,835   90,952   133,702  144,483  149,618 155,364 158,474 159,898 160,641
2 26,727   56,127   80,333   102,246  115,923  124,101 129,665 135,647 137,051
3 12,741   28,799   51,340   66,864   75,298   77,781 81,663 85,297 
4 12,197   66,940   116,085  189,632  238,067  256,107 268,433
5 36,379   106,431  211,090  250,988  372,767  397,362
6 33,095   66,724   149,868  169,640  195,716  
7 40,445   111,841  177,024  243,329  
8 15,626   33,902   49,074   
9 8,905     23,925   
10 18,767   

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 30,749   104,555  139,080  167,694  192,689  211,288 234,565 243,460 249,334 250,342
2 18,744   59,501   84,859   104,948  123,952  131,196 138,104 146,359 150,178
3 23,811   45,603   66,784   83,474   96,641   109,340 119,395 123,575
4 21,178   72,806   132,125  164,317  182,358  193,882 198,915
5 17,629   79,708   131,514  164,120  177,588  185,545
6 19,800   39,850   74,538   95,155   123,458  
7 27,280   74,116   167,166  198,330  
8 31,000   65,706   145,182  
9 26,647   52,680   
10 19,750   

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 11,005   32,460   55,443   68,105   76,930   79,764 84,554 87,710 89,183 89,741 
2 10,432   30,309   43,826   52,996   60,117   66,110 70,261 73,734 74,699 
3 19,228   61,920   84,437   118,352  145,302  154,077 164,585 169,942
4 40,071   71,818   126,239  142,520  160,824  166,083 175,594
5 8,329     27,434   36,556   48,689   59,806   62,913 
6 37,588   80,964   113,339  144,595  168,517  
7 11,999   35,752   45,883   73,890   
8 23,454   51,597   82,190   
9 27,396   60,946   
10 21,713   

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 30,027   58,453   89,482   108,252  130,976  145,411 156,487 162,450 170,427 171,350
2 16,320   38,990   77,352   98,668   117,965  135,545 140,616 145,952 153,063
3 24,984   70,812   98,899   145,326  159,692  169,778 182,444 188,610
4 26,200   102,351  133,953  153,001  224,085  246,565 265,858
5 16,310   32,113   57,183   67,751   84,668   88,957 
6 39,655   96,230   178,247  212,986  237,964  
7 23,570   80,923   133,350  153,207  
8 23,901   59,181   93,499   
9 9,206     22,467   
10 12,042   
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Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 21,459   37,959   53,232   68,733   75,379   77,898 83,438 86,260 87,342 88,033 
2 13,413   62,947   117,920  132,902  158,028  174,205 181,453 184,958 187,133
3 10,030   20,093   26,076   35,911   40,141   42,145 43,347 44,274 
4 10,252   20,436   27,127   38,538   42,810   47,128 50,843 
5 10,869   40,349   58,783   89,550   104,979  108,563
6 25,400   64,845   121,136  136,303  154,882  
7 27,057   50,276   68,630   85,204   
8 34,823   83,471   105,230  
9 7,668     22,226   
10 33,614   

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 27,065   96,241   170,449  195,590  257,528  275,620 293,746 308,764 313,286 314,285
2 16,269   47,968   69,520   85,012   94,851   98,843 112,554 116,633 118,588
3 15,453   32,787   47,746   58,844   73,465   80,528 87,157 91,957 
4 9,651     23,938   41,717   50,970   62,785   66,558 69,342 
5 26,489   60,088   80,783   98,872   114,270  128,292
6 43,466   124,880  256,085  293,536  374,755  
7 18,846   65,799   95,494   108,400  
8 28,046   74,456   96,261   
9 12,896   46,984   
10 21,073   

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 10,923   28,544   75,238   102,369  123,789  144,047 148,454 159,817 166,593 167,136
2 25,914   52,445   99,599   117,910  157,857  165,692 170,279 174,458 177,744
3 8,645     16,953   43,953   53,800   63,236   66,684 70,244 73,782 
4 22,646   51,479   78,913   104,398  113,686  123,392 134,922
5 15,299   29,336   74,028   111,802  138,914  149,549
6 16,950   41,545   81,656   105,221  116,345  
7 13,331   25,252   37,354   45,241   
8 11,161   25,658   39,702   
9 41,814   99,348   
10 9,030     

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 16,697   31,161   43,337   61,181   69,640   71,720 76,771 79,048 79,687 80,147 
2 28,457   118,337  160,489  211,952  244,756  258,547 270,508 278,961 286,332
3 14,933   41,507   66,642   82,306   97,349   114,176 131,567 138,149
4 11,601   36,229   73,656   90,505   98,207   105,530 114,580
5 20,654   53,272   82,907   110,969  137,609  163,694
6 12,412   25,369   63,378   78,373   84,263   
7 14,490   41,016   57,118   79,141   
8 8,092     15,099   28,252   
9 11,336   45,482   
10 23,572   
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Process 2 Triangles 
 
The 12 randomly generated triangles for Process 2 that were used to provide the illustrations set 
out in Section 3.4 and Appendix F are set out below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 8,691     16,412   13,021  14,220   10,261   6,349   9,286   2,500   3,111   3,242   
2 12,284   15,302   18,410  9,155     7,240    4,126   4,756   1,943   3,981   
3 12,044   25,216   9,428    17,196   8,932    3,771   3,665   2,774   
4 7,823     14,241   9,843    11,990   11,487   1,005   1,367   
5 9,678     21,875   16,528  23,593   15,624   23,499 
6 8,520     12,163   34,000  13,779   11,429   
7 14,529   41,605   21,048  20,067   
8 10,190   18,336   13,488  
9 14,092   23,813   
10 9,823     

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 14,830   17,616   13,948  6,997     11,450   13,232 4,892   2,727   1,633   2,488   
2 10,734   19,125   30,631  12,025   8,334    4,446   6,637   2,725   1,335   
3 19,368   20,105   11,387  8,033     22,040   6,069   8,566   6,454   
4 12,030   15,352   9,834    23,183   6,326    11,400 2,804   
5 9,237     34,893   14,039  6,528     7,838    14,203 
6 10,626   22,307   10,266  8,500     12,045   
7 12,831   24,092   7,212    15,174   
8 14,359   68,890   9,929    
9 10,511   41,499   
10 9,528     

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 12,060   19,940   20,094  15,194   5,845    5,018   7,790   907      871      2,248   
2 16,418   22,623   11,792  12,253   6,070    1,994   10,876 3,510   2,677   
3 10,902   21,078   28,910  49,157   7,198    9,819   2,239   5,222   
4 10,841   29,304   20,521  8,500     6,019    3,540   2,256   
5 13,251   18,121   16,560  20,789   9,620    2,990   
6 13,501   27,358   11,883  18,234   2,645    
7 13,002   14,957   24,758  23,870   
8 10,302   26,168   18,826  
9 15,435   12,383   
10 10,291   

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 13,612   19,344   7,103    9,533     19,869   3,440   2,178   2,685   645      715       
2 9,902     19,349   10,711  9,546     8,242    3,484   5,448   3,598   1,374   
3 20,090   15,624   20,898  5,854     3,845    7,739   2,104   1,971   
4 12,810   16,678   10,323  5,464     6,058    15,909 2,336   
5 7,991     35,149   23,193  12,538   16,974   6,083   
6 9,454     26,243   12,472  9,666     4,760    
7 11,258   28,854   13,302  19,173   
8 13,530   32,737   18,648  
9 6,840     23,298   
10 14,080   
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Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 17,561   28,235   18,938  19,186   9,787    3,065   19,422 8,809   3,095   7,514   
2 14,987   22,528   26,876  12,298   31,167   9,378   616      3,663   14,436 
3 14,074   17,807   34,889  17,917   8,528    3,769   5,033   5,173   
4 10,216   18,081   14,930  17,924   15,503   5,721   5,062   
5 20,950   19,333   16,914  10,605   12,280   12,418 
6 12,121   15,402   17,422  20,108   5,689    
7 14,694   19,098   27,274  15,466   
8 13,515   18,280   29,821  
9 14,704   19,485   

10 12,785   

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 10,879   14,332   15,936  5,442     12,177   4,769   8,843   2,532   663      1,324   
2 19,587   26,117   11,705  16,743   8,046    6,750   3,613   734      1,420   
3 9,673     14,001   19,404  10,090   9,306    3,875   6,322   8,917   
4 7,955     53,969   10,229  10,565   7,671    5,050   2,712   
5 8,504     34,286   23,242  16,984   9,063    8,390   
6 13,869   20,078   21,559  14,966   11,811   
7 9,625     27,293   12,104  6,387     
8 13,108   25,484   13,544  
9 10,166   19,221   

10 8,217     

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 9,729     23,602   13,692  25,965   13,568   8,826   5,007   1,030   2,418   238       
2 20,569   27,654   18,498  26,611   7,193    3,573   3,065   2,972   274      
3 8,989     23,342   24,692  16,336   5,839    7,633   6,007   5,781   
4 12,382   27,269   18,620  7,788     20,688   2,424   5,923   
5 12,472   32,451   14,801  20,797   2,793    7,121   
6 9,354     24,548   26,600  20,705   3,741    
7 9,642     14,060   23,212  12,253   
8 20,358   30,039   21,419  
9 10,337   20,533   

10 10,604   

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 10,809   34,594   10,186  12,933   14,660   28,840 6,899   9,682   2,881   6,759   
2 12,025   23,215   15,868  13,782   4,138    8,214   4,406   4,021   7,302   
3 13,188   18,034   9,190    12,412   10,786   2,851   5,858   1,391   
4 9,221     18,480   18,948  8,832     11,855   8,115   3,473   
5 12,006   17,859   21,751  8,960     37,176   5,460   
6 15,797   20,155   21,105  31,340   9,881    
7 14,377   17,822   14,684  15,558   
8 7,932     24,303   18,601  
9 13,338   23,290   

10 18,772   
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Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 17,729   27,176   14,977   19,398   9,430     15,021 2,857   1,814   2,159   1,970   
2 17,894   13,936   11,889   13,079   12,172   16,060 7,668   4,791   509      
3 10,058   20,298   23,357   61,027   8,797     2,215   6,539   4,409   
4 10,101   22,174   25,766   13,657   8,581     6,242   5,030   
5 10,343   34,048   24,472   8,623     16,004   23,242 
6 12,057   26,230   17,197   15,701   6,792     
7 11,971   27,802   12,214   38,605   
8 7,968     10,627   9,633     
9 8,340     29,114   

10 7,433     

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 12,949   25,650   31,926   18,842   7,384     6,553   1,431   1,271   3,866   1,208   
2 14,304   34,948   36,874   13,256   3,525     20,893 8,369   3,725   8,554   
3 10,090   25,464   19,575   5,009     20,827   7,428   4,822   751      
4 9,247     15,118   12,967   16,666   2,194     8,523   8,473   
5 8,255     19,954   25,695   9,681     8,254     2,210   
6 16,059   43,970   15,926   29,047   25,999   
7 17,840   23,050   24,780   21,578   
8 16,238   17,379   5,632     
9 15,800   23,385   

10 9,627     

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 12,504   24,492   16,782   11,715   3,347     12,430 3,936   4,663   2,397   1,642   
2 7,985     30,371   13,655   10,190   16,897   12,737 1,875   1,880   4,062   
3 15,559   15,953   6,198     12,493   8,257     5,353   958      575      
4 16,795   35,166   36,280   13,522   16,619   8,902   1,875   
5 14,196   42,549   22,579   17,920   6,517     4,311   
6 13,136   22,438   13,509   19,771   2,239     
7 11,206   15,339   17,724   30,728   
8 9,496     10,452   22,319   
9 6,583     25,016   

10 10,174   

Development Period
0 1 2 3 4 5 6 7 8 9

Accident
Period

1 16,120   27,101   18,251   12,432   5,468     5,792   8,755   2,678   770      2,773   
2 9,083     20,766   7,292     3,993     28,380   3,170   1,597   8,411   3,061   
3 10,686   19,169   12,163   19,202   1,338     6,317   10,419 3,988   
4 9,039     25,622   15,423   12,368   7,278     6,671   2,694   
5 9,668     44,791   20,903   7,677     4,290     2,058   
6 7,041     25,951   9,530     29,095   10,223   
7 7,619     27,876   29,664   11,999   
8 9,112     24,742   18,685   
9 10,838   17,970   

10 9,150     
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Appendix F 
 
Comparison of ‘True’ Distribution of possible claims outcomes for the Artificial Claims 
Generating Processes with assessment by different quantitative methods 
 
Process 1 – Chain-Ladder Process Followed 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Process 1- Example 1  - 'True' Distribution of Possible 
Outcomes vs Assessment by various methods 
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Process 1 - Example 3  - 'True' Distribution of Possible 
Outcomes vs Assessment by various methods 
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Process 1 - Example 4  - 'True' Distribution of Possible 
Outcomes vs Assessment by various methods 
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Process 1 - Example 5  - 'True' Distribution of Possible 
Outcomes vs Assessment by various methods 
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Process 1 - Example 6  - 'True' Distribution of Possible 
Outcomes vs Assessment by various methods 
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Process 1 - Example 7  - 'True' Distribution of Possible 
Outcomes vs Assessment by various methods 
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Process 1 - Example 8  - 'True' Distribution of Possible 
Outcomes vs Assessment by various methods 
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Process 1 - Example 9  - 'True' Distribution of Possible 
Outcomes vs Assessment by various methods 
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Process 1 - Example 10  - 'True' Distribution of Possible 
Outcomes vs Assessment by various methods 
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Process 1 - Example 11  - 'True' Distribution of Possible 
Outcomes vs Assessment by various methods 
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Process 1 - Example 12  - 'True' Distribution of Possible 
Outcomes vs Assessment by various methods 
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Process 2 (Chain-Ladder Process not followed)  
 
Comparison of ‘True’ Distribution of possible claims outcomes with assessment by different 
methods 
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Outcomes v Assessment by Other methods
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Process 2 - Example 8 - 'True' distribution of Possible
 Outcomes v Assessment by Other methods
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Process 2 - Example 3 - 'True' distribution of Possible
 Outcomes v Assessment by Other methods
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Process 2 - Example 4 - 'True' distribution of Possible
 Outcomes v Assessment by Other methods
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Process 2 - Example 5 - 'True' distribution of Possible
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Process 2 - Example 6 - 'True' distribution of Possible
 Outcomes v Assessment by Other methods
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 Outcomes v Assessment by Other methods
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Process 2 - Example 9 - 'True' distribution of Possible
 Outcomes v Assessment by Other methods
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Process 2 - Example 10 - 'True' distribution of Possible
 Outcomes v Assessment by Other methods
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Process 2 - Example 11 - 'True' distribution of Possible
 Outcomes v Assessment by Other methods
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Appendix G 
 
Correlation Scatter Plots  
 
The scatter plots set out in this Appendix have been generated by simulations using the Excel add-
in package @risk©.  Each plot represents observations of a pair of lognormal random variables 
with mean 100 and standard deviation 20, associated by correlation coefficients of varying 
magnitude. 
 
Each dot represents a single simulation.  2,000 simulated observations are shown in each plot.  The 
least squares line of best fit, and its associated r2 value is also included in each chart. 
 
The series of charts aim to provide a tangible representation of the physical meaning associated 
with varying degrees of association.  They may assist actuaries selecting assumptions for the 
correlation between the likelihood of adequacy of outstanding claims liability estimates.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Correlation 0% y = -0.0153x + 100.7
R2 = 0.0003
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 Correlation 10% y = 0.118x + 87.961
R2 = 0.0138
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Correlation 25% y = 0.2493x + 74.291
R2 = 0.0602
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 Correlation 35% y = 0.3782x + 62.333
R2 = 0.1444
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Correlation 50% y = 0.5125x + 48.367

R2 = 0.2586
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Correlation 65% y = 0.6305x + 36.875
R2 = 0.3673

50

70

90

110

130

150

170

50 70 90 110 130 150 170

Lognormal mean 100 sd 20

Lo
gn

or
m

al
 m

ea
n 

10
0 

sd
 2

0 



G  2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Correlation 75% y = 0.7252x + 27.289
R2 = 0.5385
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Correlation 90% y = 0.8998x + 10.406
R2 = 0.7979
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Correlation 100% y = x + 0.0000
R2 = 1
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