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Introduction 
 
At the 2001 General Insurance Seminar I presented a paper entitled “Regime 
Switching and Cycles” which used a Gibbs Sampling algorithm to fit 
parameters for a regime switching based saw-tooth model of building activity 
and the insurance cycle. During the question and answer period after the 
presentation, one of the questions from the floor asked how to determine 
whether a time series followed a quasi-cyclic pattern rather than a traditional 
time series process. There was no quick and simple answer to that question 
in that question and answer session.  
 
This paper lists some of the characteristics of quasi-cyclic models. It then 
proposes some tests for whether the strength of certain quasi-cyclic 
characteristics are consistent with the well known autoregressive AR(1) and 
AR(n) processes. These tests are then applied to economic factors that are 
known to affect mortgage insurance claims. 
 
In summary, the purpose of this paper is to show when to use autoregressive 
time series models, and when to consider using some of the lesser known 
quasi-cyclic processes. 
 
 
Characteristics of Quasi-Cyclic Data Series 
 
Not all quasi-cyclic data series share the same characteristics. A quasi-cyclic 
risk will have some of the following characteristics: 
 

1. Consistent floor or ceiling values where the series turns around and 
heads the opposite direction 

2. Long runs of consistently sloped movements in value, punctuated by 
sudden changes 

3. A quasi-regular cycle length 
4. Periods of stagnancy when values do not move 
5. A possible unit root 

 
A quasi-cyclic risk must always have the characteristic of a quasi-regular 
cycle length. This means that there is a concentration of the wavelengths 
within the observed time series. The wavelength is measured by the number 
of periods between successive peaks or troughs (points at which there is a 
change in slope). In a process with no memory, the distribution of 
wavelengths follows a Poisson distribution. 
 
The real-life examples in this section of the paper show how some time series 
show different combinations of these characteristics. 
 



Graph 1: Movement Between Limits – Seasonally Adjusted Building Approvals 
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Many data series have a characteristic of a floor or ceiling for values, but this 
does not necessarily mean that they are quasi-cyclic. For example, 
unemployment rates cannot lie outside the range of 0% to 100% because the 
values are percentages of the population. With quasi-cyclic risks, we are more 
interested in series that move up and down between two limits. Australian 
building approvals counts are a clear example of this type of characteristic. 
Autoregressive time series processes do not have peaks and troughs with 
consistent heights, but instead have peaks and troughs over the entire range 
of possible data series values. 
 



Graph 2: Periods of Consistent Slope – Slopes of Building Approvals 
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Autoregressive time series processes do not have long periods of consistently 
sloped movements in values. For example, in an AR(1) process the mean 
slope is related to the distance from the mean, and thus one would expect 
steeper slopes toward the mean when values have drifted away to extremes. 
Quasi-cyclic risks often have consistent changes in value over long periods. 
The slope of Australian Building Approvals shows a clear tendency towards 
long periods of upward or downward changes in value. 
 



Graph 3: Quasi-Regular Cycle Lengths - Building Approvals 
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Autoregressive time series do not have a long memory – they do not 
remember how long it has been since the last peak or trough, leading to a 
statistical distribution of the length of each cycle (measured as peak to peak) 
that looks rather like a Poisson or Gamma distribution. Quasi-cyclic data 
series have cycle lengths that are clustered tighter around particular values 
than one would expect from a process with no memory. Australian building 
approvals have cycle lengths clustered around 15 and 23 (the cycle length of 
10 was due to the extraordinary influence of the introduction of GST). 
 
When the cycle lengths are very tightly clumped around a single value, this 
may indicate a seasonal process rather than a quasi-cyclic process. In these 
cases one should try to use a simple and tractable seasonal model first, rather 
than a more complex regime switching model. 
 



Graph 4: Stagnant Periods - Building Approvals 
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Some regime switch processes have “attractors” that periodically change. 
Once the model has reached the attractor value, the observed values do not 
show significant movement until the attractor location changes. Australian 
building approvals show some signs of this trait, but we will come across a 
clearer example of stagnant values later in this paper. 
 
Finally, quasi-cyclic data series often test positive for a “unit root”. This means 
that when one fits an autoregressive model to the data, the parameters may 
lead to a time series that is not stationary. Stationary series always tend back 
towards their mean values (because they gradually dampen the effect of 
noise), while series that are not stationary can permanently move away from 
the mean. The presence of a unit root can sometimes mean that the series is 
a random walk rather than an autoregressive series. 
 
Some Interesting Economic Data Series 
 
I have chosen three particular economic data series to look at because they 
all effect mortgage insurance claim costs, and because I had a prior 
expectation that they are all quasi-cyclic. 
 



Unemployment 
 

 
 
Unemployment can trigger a mortgage insurance claim because the loss of 
household income can cause the borrower to default on their home loan 
repayments.  
 
Graph 5: Unemployment Rates 
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Changes in unemployment rates are strongly correlated with economic 
growth, with strong economic growth reducing unemployment rates. 
Economic growth is thought to be quasi-cyclic. Low unemployment rates can 
mean shortages of workers, which can in turn lead to inflationary pressures 
and constraints upon production, which in turn can eventually lead to slower 
economic growth and higher unemployment. This flow-on to economic growth 
could be viewed as a quasi-cyclic process. 
 

House Prices 
 

 
 
House prices affect mortgage insurance claims because the house can be 
sold to recover some or all of the outstanding loan balance. In times of rapid 
escalation in home prices, the sale of the house will usually cover the 
outstanding loan balance. But when home prices drop or are stagnant, the 
outstanding home loan balance may exceed the sale price of the house (after 
sales expenses e.g. real estate agent fees). 
 



Graph 6: House Prices in My Suburb 
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House prices can have “bubbles” (much like the dotcom sharemarket bubble), 
and it appears that we are in a house price bubble at the moment. Bubbles 
are fed by expectations and cash flows and tend to be quasi-cyclic. 
 

Interest Rates 
 

 
 
Increases in interest rates can trigger mortgage insurance claims because 
they can cause loan repayments to exceed what the borrower can afford to 
pay. 
 



Graph 7: Overnight Cash Rates 
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Interest rates are used by the Reserve Bank to tune economic growth and 
control inflation. Economic growth is thought to be quasi-cyclic. 
 
Testing for Quasi-Cyclic Characteristics 
Unit Roots 
 
Statistical tests of the null hypothesis that a time series is non-stationary 
against the alternative that it is stationary are called “unit root” tests. The term 
“unit root” derives from the fact that an ARMA process is non-stationary if the 
characteristic polynomial has a root that does not lie within the unit circle of 
complex numbers. 
 
An AR(1) model can be expressed as: 
 
Equation 1: Formula for AR(1) 

 Yt – µ = ρ * (Yt-1 – µ) + et 
 
A unit root can occur in an AR(1) model when the reversion factor ρ equals 
one. In such cases the time series is not stationary and is more of a random 
walk than a mean reversionary series.In such circumstances the impact of a 
particular shock et does not diminish with age. 
 
For the higher order autoregressive models, the model AR(n) can be 
expressed as: 



Equation 2: Formula for AR(n) 

 Yt – µ = α1 * (Yt-1 – µ) + α2 * (Yt-2 – µ) + … + αn * (Yt-n – µ) + et 
 
The characteristic polynomial for this model is expressed as: 
 
 mn – α1 * mn-1 – α2 * mn-2 - … - αn  
 
If m = 1 is a root of this polynomial, then 
 
 1 – α1 –  α2 - … - αn = 0 
 
It therefore follows that: 
 
 µ * (1 – α1 –  α2 - … - αn ) = 0 
 
This implies that µ is not identifiable in equation 2 above whenever there is a 
unit root (i.e. whenever m = 1 in the characteristic equation). 
 
Sherris, Tedesco and Zehnwirth (1997) state that Australian interest rates 
may have a unit root. 
 
There is a choice of statistical tests for unit roots, all of which have the 
existence of a unit root as the null hypothesis that the test then seeks to 
disprove this hypothesis. In this paper I have chosen to use the Dickey-Fuller 
(Case 2: Constant Term but No Time Trend Included in the Regression; True 
Process is a Random Walk) statistical test as recommended by Hamilton 
(1994). In this test one expresses the time series in the form: 
 

Figure 1: Alternate AR(1) Formula 

Yt = α + β * Yt-1 + et 
 
Then one tests whether β is significant using a test value that is a function of 
the least squares estimator of β and the number of observations. 
 
Figure 2: Dickey-Fuller Test Statistic 

T = n * (B – 1) 
 
where B is the sample estimator of β, n is the number of observations and T is 
the sample test statistic. The critical values for this test statistic were tabulated 
by Fuller (1976). The null hypothesis (unit root) is rejected when the sample 
statistic is less than the critical value. 
 
Table 1: Test Results for Unit Roots 

Data Series Sample Statistic Critical Value Conclusion 
Unemployment -4.9 -16.8 May have a unit root 
House Prices -23.7 -16.8 May have a unit root 
Interest Rates 1.1 -16.8 May have a unit root 



 
In each of the tests I was unable to reject the hypothesis that the series has a 
unit root. Since the null hypothesis was that a unit root existed, these tests do 
not prove the existence of a unit root, and do not disprove the assumption of 
an autoregressive time series. However, they highlight the danger of applying 
an autoregressive model to this data. 
 

Length of Runs and Autocorrelation of Deltas 
 

 
In order to reject autoregressive models, one must use a statistical test that 
has an autoregressive process as the null hypothesis, and which is able to 
disprove that hypothesis. 
 
The form of this test was suggested by a graphical presentation of the official 
cash rate time series. The official cash rate data appears to be partially cyclic, 
whereas a standard AR(1) process will not appear cyclic. The reason that the 
data series appear cyclic may be because the changes in interest rates from 
month to month may be correlated.  
 
In an AR(1) autoregressive series, the values taken in consecutive time 
periods are correlated, but the single period changes in values (which I call 
“deltas”) will be only insignificantly correlated at most. 
 



We can test the sample correlation coefficient of the changes in data series 
values against the probability that such a sample value would occur if the time 
series was AR(1) with best fit parameters. I have use Monte Carlo simulation 
to estimate the probabilities of the sample correlation of changes in data 
series values being as different from the mean of the changes in data series 
values if they followed an AR(1) process. 
 
Table 2: Test Results for Delta Autocorrelations Against AR(1) Process 

Data Series Sample Statistic Critical Values Conclusion 
Unemployment 0.51 -0.34 and 0.22 AR(1) rejected 
House Prices -0.28 -0.75 and -0.18 AR(1) possible 
Interest Rates 0.47 -0.14 and 0.13 AR(1) rejected 
 
For two of the data series we are able to reject the null hypothesis that the 
series followed an AR(1) process. Changes in values from period to period 
are too strongly correlated with one another. For the case of house prices the 
data series may be too short to draw a conclusion. Regardless of the inability 
to reject the AR(1) hypothesis for house prices using delta autocorrelations, 
the null hypothesis was already thrown into question by the results of the unit 
root test in the previous section. 
 
The AR(1) bootstrapping approach was first proposed by Priest (2002). Its 
weakness is the narrowly defined null hypothesis of an AR(1) process i.e. that 
the lag is no greater than 1 period. In order to broaden this test, we can 
extend the null hypothesis to an AR(n) process with a greater lag. So for the 
extended test we keep increasing the lag (n) until we have reached the 
maximum lag for which the parameters remain statistically significant. 
 
Table 3: Test Results for Delta Autocorrelations Against AR(n) Process 

Data Series n Periods Sample 
Statistic

Critical Values Conclusion 

Unemployment 8 47 0.51 0.28 and 0.78 AR(8) possible 
House Prices 11 24 -0.28 -1 and 1 AR(11) possible
Interest Rates 30 188 0.47 -0.07 and 0.44 AR(30) rejected 
 
While we can not reject the AR(n) null hypothesis for unemployment and 
house prices, we need to use a large number of parameters within the longer 
lag autoregressive time series. The higher number of parameters may mean 
that we need to overparameterise the model in order to match the 
characteristics of the data. This should warn the user that an AR(n) model is 
not appropriate model to use. The house prices AR(n) model which uses 13 
parameters (11 lags, a mean and a sigma) to describe 24 data points is an 
obvious candidate for the label of “overparameterised”. 
 
We can define a “run” as the number of consecutive periods during which the 
data series values increase or decrease. This will be related to the delta 
autocorrelations because the higher the delta autocorrelations, the longer the 
runs will be. Like the delta autocorrelations, we could use a Monte Carlo 



method to simulate an AR(n) process to measure the distribution of lengths of 
runs and compare this to the observed run lengths. Because of the 
overparameterisation displayed above, I have used an AR(1) process for the 
comparison of observed and expected run lengths. 
 
Graph 8: Unemployment Run Lengths 
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The run lengths for unemployment are much longer than would be expected 
from an AR(1) process. The runs of 1 and 2 periods length are during periods 
of stagnancy, which are discussed later in this paper. 
 



Graph 9: House Prices Run Lengths 
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House price run lengths are more symmetrical that one would expect from an 
AR(1) process. This may indicate clumping of cycle lengths, which would 
indicate that booms in house prices occur on a quasi-regular basis. 
 
Graph 10: Interest Rate Run Lengths 
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Interest rate run lengths are much closer to the statistical distribution (under 
the hypothesis of an AR(1) process) than we saw in the previous two 
examples. 
 

Clusters of Peak / Trough Heights and Attractor Points 
 

 
 
When peaks and troughs tend to recur at similar levels over time, a quasi-
cyclic model with multiple “attractors” may be the most appropriate model to 
use. Periods of stagnancy may also occur around the attractor locations. 
Autoregressive time series models have only one attractor – the series mean. 
 
We can define a peak or trough as a location at which a run ends. 
Alternatively we can define the peak or trough as a local minimum or 
maximum. 
 



Graph 11: Attractors - Unemployment Peak and Trough Locations 
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The peak and trough points for unemployment appear to have common 
attractor values. The strongest attractor is around 8.3 to 8.5, which contains 6 
of the 15 turning points. 
 
House price movements do not have any clear attractors. 
 
3 of the 7 interest rate peaks and troughs lie at 4.75%. However, the sample 
size is too small (because the run lengths are too long) for any strong 
conclusions to be made. 
 



Graph 12: Attractors - Interest Rate Stagnancy Locations 
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The stagnancy locations are clustered around 4.75% and 6.0%. These are 
also the locations of 5 of the 7 peaks and troughs in the data series. Interest 
rates move towards attractors that periodically change (Priest 2002). 
 
Conclusion 
 
While this paper presents some statistical tests that can be useful to 
determine whether a data series is autoregressive, some of these tests are 
relatively weak. The actuary should look at all of the characteristics of a data 
series, and consider the causes of any patterns, before using their judgement 
to determine whether to model using the more traditional autoregressive time 
series models or switching to one of the quasi-cyclic processes (such as a 
regime switching process). 
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