

Does rainfall increase or decrease motor accidents

A reflection on the good, the bad and the ugly (in statistics)

Gráinne McGuire
Taylor Fry Consulting Actuaries

Contents

1. Introduction
2. Data
3. Modelling with rainfall

- Monthly
- Daily

4. Reflection on the use of statistics

9-12th Nov 2008
Hyatt Regency Coolum

Introduction

- Does rain increase the number of motor accidents?
- The role of statistics in getting a good answer
- Discussion of both of these points previously presented in Davies et al (2004)

We are not talking about...

Nor are we talking about...

16th
General Insurance Seminar

9-12th Nov 2008 Hyatt Regency Coolum

We discuss Australian (Perth) roads, drivers and conditions

Data

- Data
- CTP claims from accidents in Perth from July 1993 to December 2005
- Accident date and time
- Vehicle registrations
- Monthly and daily rainfall data from Perth weather stations
- Manipulation
- Match accident and rainfall days
- Days defined to begin at 9am

General
 Insurance Seminar

9-12th Nov 2008

 Hyatt Regency Coolum
Claim frequency - modelling with rainfall

Monthly claim frequency

Rainfall

Results after removal of trend

Fitting of trend
Residuals

Regression on rainfall

Quantity	Estimate	Std error	t-value	Significant?
Intercept	-0.0132	0.0029	-4.5413	$* * *$
Rainfall	0.0002	0.0000	6.3744	$* * *$
$\mathrm{R}^{\wedge} 2$	22%			
df	148			
F-value	40.6330			$* * *$

Rainfall has small but significant effect - higher rainfall \rightarrow higher frequency.

But low R ${ }^{2}$

Is rainfall truly an explanatory variable?

- Is it possible that rainfall is significant simply because it acts as a proxy for a seasonal effect
- If we include daylight hours in regression, rainfall is no longer significant

Quantity	Estimate	Std error	t-value	Significant?
Intercept	0.1213	0.0267	4.5345	$* * *$
Rainfall	$3 . E-05$	$5 . E-05$	0.6765	
Daylight	-0.0102	0.0020	-5.0554	$* * *$
$\mathrm{R}^{\wedge} 2$	33%			
df	147			$* * *$
F-value	36.4664			

Is this the end?

- The monthly normal linear regression analysis does not support a rainfall effect.
- End of story?
- Maybe not - are we approaching the problem correctly?
- Lies, damn lies and statistics

Good modelling

1. Why use monthly data?

- What does rain on $1^{\text {st }}$ March have to do with accidents on $31^{\text {st }}$ March?
- Why doesn't rain on $31^{\text {st }}$ March have any bearing on accidents on $1^{\text {st }}$ April
- \quad Suggests use of data on a finer scale - e.g. daily

2. Accidents = count data.

- Poisson error distribution is preferable to normal Analysis is similar to that in Eisenberg (2004)

Food for thought - Eisenberg (2004)

- Analysis based on American motor accident data
- Monthly analysis showed an inverse relation with rain
- More rain, less accidents
- Daily analysis demonstrated two opposing rainfall effects
- Primary: rain on a particular day leads to more accidents that day
- Secondary: rain on previous days means fewer accidents. May be due to cleaner roads or more careful drivers.
- What will analysis of Perth daily data show?

Model setup

- Over-dispersed Poisson GLM
- Covariates include:
- Accident month: to remove the overall downward trend
- Month of year: to capture annual seasonal effects
- Day of week: e.g. Fridays different to Sundays
- Daily rainfall: both rainfall on the accident day and rainfall in the past (represented here by rain 2 days before the accident)

Rainfall results from daily modelling

Secondary
Past rainfall

9-12th Nov 2008 Hyatt Regency Coolum

Statistics: the good, the bad and the ugly

The bad

- Trying to explain the overall reducing trend using regression techniques and various explanatory factors
- Example here regresses frequency on the author's age.
- Pretty good fit but meaningless in terms of causation
- Similar results from any monotonic sequence including sensible ones like fleet average age, multi-vehicle ownership,

Frequency
 but does it mean anything.

- Correlation does not equal causation.

The ugly

- Accident numbers are count data
- Use of normal error distribution is inappropriate
- Could model \log (accident numbers/frequency); a log normal model. But still incorrect and it requires a bias correction.

9-12th Nov 2008
Hyatt Regency Coolum

The good

- Modelling daily rather than monthly
- Using an appropriate error distribution
- We can be more confident that rainfall is the cause of the "rainfall" effects
- But never 100\% sure......

References

- Davies, R., Winn, R. and Jiang, J. (2004). Determinants of claim frequency in CTP schemes. Accident Compensation Seminar, 2004, Institute of Actuaries of Australia.
- Eisenberg, D. (2004). The mixed effects of precipitation on traffic crashes. Accident Analysis and Prevention, 36, 637-647.

To conclude

- Rainfall results are interesting in themselves
- The problem is a good example of the importance of getting the level of data detail correct
All models are wrong, some are useful

