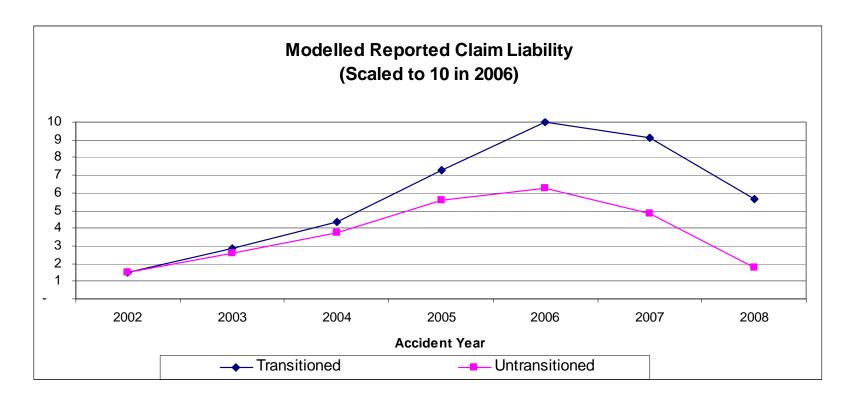


Transition Models Underlying Statistical Case Estimation

Dion Oryzak
Insurance Australia Group


Statistical Case Estimation

- Estimation of ultimate finalised claim cost from individual reported claim characteristics
- Trade off between
 - i) Fewer variables in claim size model and simpler transition modelling: injury severity, operational time, finalisation quarter; or
 - ii) More variables in claim size model and complex transition modelling. Potential variables include more detailed injury data on all injuries, litigation status, age, gender etc

Claim Transitioning

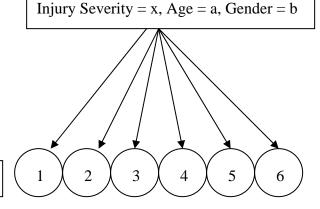
- Claims tend to transition to higher severity (higher cost) characteristics
- Adds up to 220% to the liability relative to the untransitioned liability

Sources of Transitioning

- 1) Genuine change of claim state as a result of new action by either the claimant or the insurer, eg legal representation may be sought.
- Greater completeness of information about 2) the claim. For example, doctors' reports may become available.
- 3) Erroneous information may exist in the claim data and be corrected, eg gender or the age of the claimant at the date of the incident.

Time = t

Time = t + 1


Transition Modelling

State(time t+1) ~ Multinomial(predictors at time t)

Generalised logit function for non-ordinal responses

$$\log\left(\frac{p_{ij}}{p_{ir}}\right) = \alpha_j + x'_i \beta_j$$

Injury Severity

State j at time t+1

- Characteristics i at time t
- Referent state r at time t+1

Markov assumption

Interaction and Variable Combinations

- Which variables should be combined?
- Injury severity or injury type, of 1, 2, 3, more injuries?
- Combinations becomes unwieldly
- Collapse levels if need be. Eg Collapse severities 2 and 3.
- Talk to claims staff about drivers of cost and interaction between characteristics

Variable Selection

- Behaviour of claim subsets
- Absorbing states
- Categorical vs continuous variables
- Time frame
- Effect of finalisation on transitioning
- Effect of duration on transitioning

Legislative Change

- Include scheme in parameterisation and application
 - NSW CTP: MACA
 - QLD CTP: CLA
 - Subset experience by scheme, or blend by scheme or include scheme as a predictor
- New legislation needs special treatment with identification of proxy variables. Eg, particular injury codes may be a proxy for LTCS

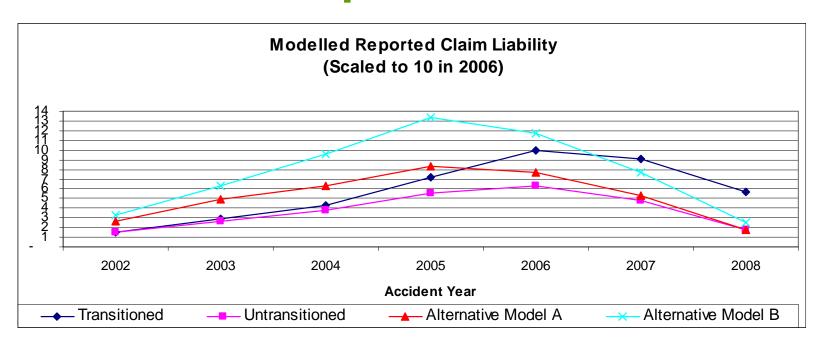
Example (Injury 1 Region): (Injury 2 Severity)

Multinomial logistic regression predictor variables

- A flag indicating if the severity of the most serious injury is zero or not (ie there are no genuine injuries recorded) at time t.
- A flag indicating if the second most serious injury has severity 1 or not at time t.
- A flag indicating if the claim is litigated at time t.
- Two spline-based transformations of the claimant's age at accident.
- Two spline-based transformations of the development period (ie number of quarters between lodgement and data capture) at time t.
- The reporting delay.
- The number of injuries recorded at time t.

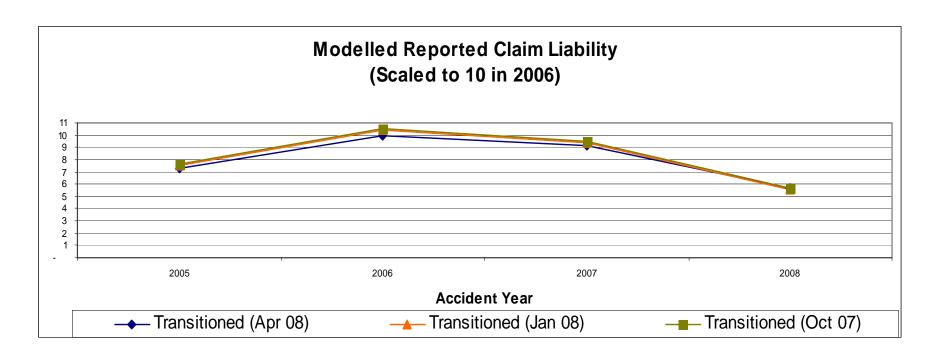
With the Inj1Sev:Inj1Reg:Inj2Sev combined variable at time t+1 predicted, decompose this into the individual component variables

Model validation using standard GLM validation techniques and misclassification tables

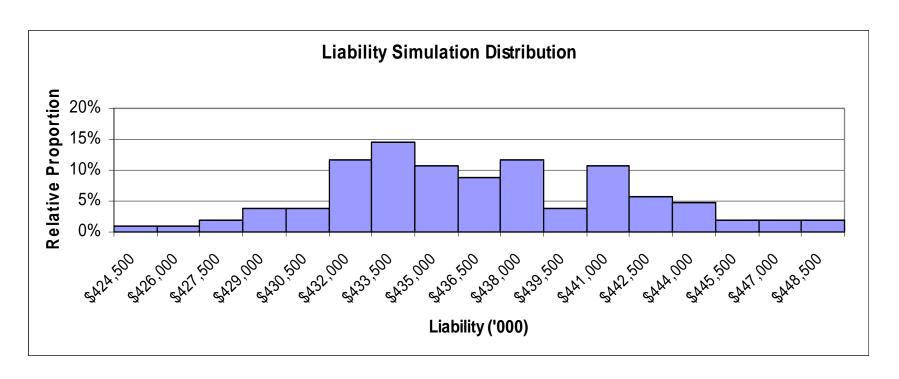


Error Estimation

- 1) Model misspecification error
- 2) Parameter error
- 3) Process error
- Error is specific to transition model. Claim size model error needs to be estimated separately
- Useful for model selection and risk margin calculation


Model Misspecification Error

- Variability around 'base' transition model
- Alternative Model A projects the combined variable Inj1Sev:Inj1Reg:Inj2Sev at time t+1 based only on its value at time t
- Alternative Model B projected Inj1Sev, Inj1Reg, Inj2Sev separately and independently
- Need to test 'unreasonable' models too


Parameter Error

- Parameters estimated using an eight quarter moving window
- Liability shifts up to 5% by shifting window by one quarter.
- Test different sampling period

Process Error

- Simulation outcome histogram (rescaled to disguise liability size)
- Stochastic variation of transitioning simulation

Conclusion

Trade-off between:

- Granular claim size model and complex transitioning; or
- Simple claim size model and 'reliable' transitioning

Questions?

16th General Insurance Seminar

9-12th Nov 2008 Hyatt Regency Coolum

Misclassification Table

Severities		Predic	ted												
0,1,2,3 Only		0:0:0	1:0:0	1:1:0	1:1:1	1:2:0	1:2:1	1:7:0	1:7:1	2:1:0	 3:7:0	3:7:1	3:7:2	3:7:3	Total
Actual	0:0:0	3740	58	77	52	4	4	143	226	28	 10	14	4	2	4581
	1:0:0	51	736	32	3	3	0	54	11	21	 2	1	0	0	934
	1:1:0	78	5	268	24	7	2	659	85	217	 31	6	9	2	1745
	1:1:1	52	24	23	390	1	29	48	1196	18	 2	73	2	0	2768
	1:2:0	4	0	7	1	0	0	20	3	6	 1	0	0	0	50
	1:2:1	4	3	2	28	0	3	5	92	1	 0	7	0	0	229
	1:7:0	146	9	649	57	18	5	2693	287	530	 117	22	37	7	5682
	1:7:1	228	68	82	1180	4	92	273	5543	70	 15	413	14	2	12147
	2:1:0	28	2	215	20	5	2	532	74	188	 30	6	11	2	1455
	3:7:0	9	0	33	3	1	0	116	18	30	 10	2	7	3	353
	3:7:1	14	2	7	73	0	7	23	413	7	 2	45	2	0	1006
	3:7:2	4	0	6	3	0	0	33	18	8	 9	2	32	22	529
	3:7:3	1	0	2	1	0	0	11	4	2	 3	1	21	24	382
	Total	4581	934	1745	2768	50	229	5682	12147	1455	 353	1006	529	382	