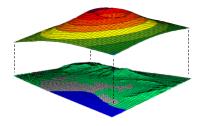
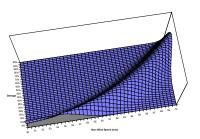


# CAT301 – Catastrophe Management in a Time of Financial Crisis

# Will Gardner Aon Re Global







- CAT101 and CAT201 Revision
- The Catastrophe Control Cycle
- Implications of the Financial Crisis



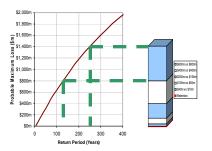
# CAT101 - An Application of Actuarial Techniques to Cyclone Simulation (GI Seminar XI 1997)

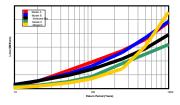
- Models simulate "possible" events
- Events
  - Assumed to be independent
  - Assumed to act in a Poisson process
  - Each have an annual frequency
  - Event severities are determined (mean, s.d., maximum)
- Event losses are ranked to determine Probable Maximum Loss (PML) curves and can be used for Dynamic Financial Analysis (DFA)

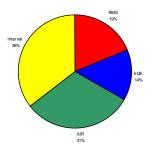










# CAT201 – Advanced Catastrophe Modelling Techniques in Practice (GI Seminar XV 2005)


- Limit Selection
  - Review a range of models and use expert advice to select appropriate all-perils whole of portfolio 250 year PML
- Price estimation
  - Market price depends on the mix of models used by reinsurance markets

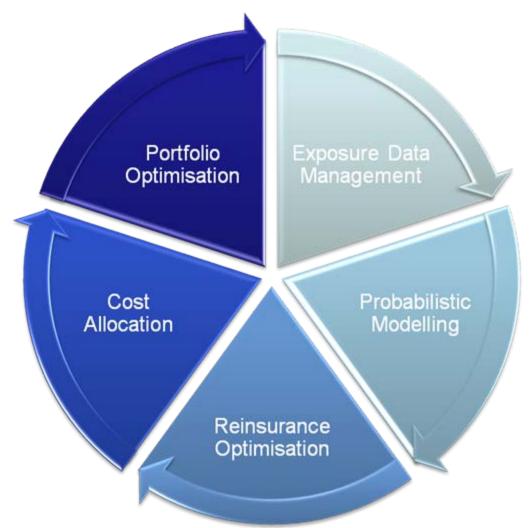
but

 Prices are based on more than just the technical price determined from the models










# Some of the Needs of Catastrophe Management

- Quantify total exposure to any one event
- Quantify potential event loss at various probabilities
- Quantify potential aggregate loss at various probabilities
- Optimise net risk in terms of risk and return
- Allocate catastrophe cost across business units, geographies and policies
- Develop direct pricing to incorporate catastrophe risk due to
  - Cost Pure peril risk
  - Cost of Concentration
- Optimise pricing and exposure mix to manage overall company profitability and risk



### **Catastrophe Control Cycle**





### **Financial Crisis**

- APRA Prudential Standard GPS 116 Capital Adequacy: Concentration Risk Capital Charge
  - "APRA will expect the insurer to be able to demonstrate an understanding of the model used in estimating the MER. This understanding will include:
    - (a) the type of data and assumptions used in the model;
    - (b) the methodology used to incorporate the data and assumptions into the model; and
    - (c) the sensitivity of the resulting MER figure to changes in the model's assumptions. "
- US standard
  - Actuarial Standards Board, June 2000, "Actuarial Standard of Practice No. 38 - Using Models Outside the Actuary's Area of Expertise (Property and Casualty)", Casualty Actuarial Society, Doc. No. 071 (*Note – Revision pending*)





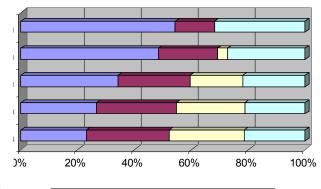
# **Data Collection**

- Data typically collected
  - Risk location, Sum Insured, Wall material, Roof material, Year of construction, Deductible amount
- Data implied
  - Geographic coordinates, Insured to Value Ratio (level of underinsurance), Building code level, Building quality, State of repair, no irregularities or appurtenant structure
- "If you have a five star model but two star data, you will get two star results" – Dr George Walker





# **Data Collection – Financial Crisis**


- Sums Insured could increase
  - Eg. "This is my primary asset"
- Sums Insured could decrease
  - Premiums going up too much
- Sums Insured growth will not match official Inflation
  - − Inflation  $\rightarrow$  Construction costs  $\rightarrow$  Building values  $\rightarrow$  Sums insured
- Misinformation Fraud
  - Rade Musulin Session 7.a





# **PML Estimation**

- Multi-model approach offers best solution
  - Better central estimate of the PML
  - Better understanding of the possible range
- Non-modelled perils need to be considered
  - Bushfire, flood, thunderstorm, hail, terrorism
- Need to allow for model adjustments
  - Before running model Eg. Input Tax credits
  - After running model Eg. Demand surge
- Expert opinion is valuable
  - The Black Box syndrome




Cyclone

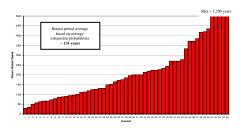
Other

NZ EQ

Earthquake






# **PML Estimation – Financial Crisis**

- Eventual Concentration Shifts  $\rightarrow$  Changing PMLs?
- Demand Surge  $\rightarrow$  Higher cost of materials and labour?
- Exchange rate movements  $\rightarrow$  Higher cost of materials?
- Fraud  $\rightarrow$  More claims, larger claims?
- For major damage, do we bother to rebuild?



# **Reinsurance Optimisation**

- Limit Selection and Retention management
- Deterministic
  - Regulatory indicators
  - Deterministic scenarios
  - Peer group comparisons
- Probabilistic
  - Dynamic Financial (Reinsurance) Analysis
  - Tradeoff between
    - Risk Reduction in volatility due to reinsurance
    - Return True cost in terms of ceded return on economic capital

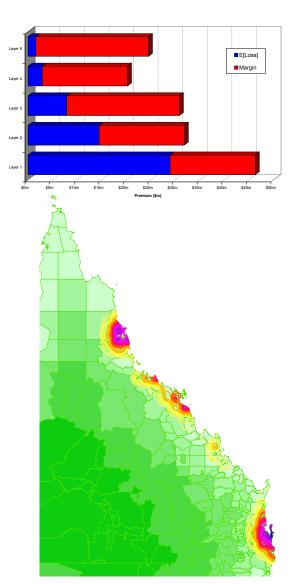


| P <del>inalik Kalan</del><br>Laun, Kalani Kala Kala |                                                                                                                 |            |                |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------|----------------|
|                                                     | in the second |            |                |
|                                                     |                                                                                                                 |            |                |
| 남 : 몸 : 몸                                           |                                                                                                                 |            | 27 <u>2</u> -  |
| - :콜 :월                                             |                                                                                                                 |            | 272 -          |
|                                                     |                                                                                                                 |            | 2.72.17        |
|                                                     |                                                                                                                 | · • • • •  | 2.22           |
|                                                     |                                                                                                                 | • •••• • • | _ <u>_</u> _   |
|                                                     |                                                                                                                 |            | 2 <b>12</b> 14 |
|                                                     |                                                                                                                 |            |                |
|                                                     |                                                                                                                 |            |                |
|                                                     |                                                                                                                 |            |                |
|                                                     |                                                                                                                 |            |                |





# **Reinsurance Optimisation – Financial Crisis**


- Changes in insurer cost of capital
- Change in solvency levels of insurers and reinsurers
- Reinsurer Rating Agency downgrades → May effect mix of reinsurers on your "panel"
- Credit charges on reinsurance recoveries
- Reinsurance prices are on the move
  - A previously attractive layer may no longer be





### **Cost Allocation**

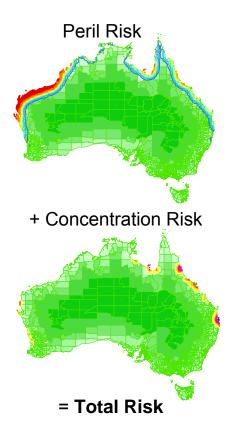
- Real cost is the sum of
  - Pure cat expected loss
  - Reinsurer margins
  - Return on net capital at risk
- Contribution of more severe events to cost is more significant in concentrated areas
- Allocate between
  - Business units
  - Classes of business
  - Geographic locations
    - State, ICA Zone, Postcode, Building







# **Cost Allocation – Financial Crisis**


- Concentration shifts may increase or decrease allocation to various geographic regions
- Across company classes of business
  - Capital allocation will change
  - Expense allocations will change
  - Cross-subsidies and correlations will change
- Larger potential impact on Multinationals
  - Exchange rate volatility
  - Cost of Capital between markets



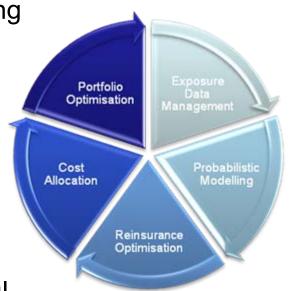


# **Portfolio Optimisation**

- Optimise using iterative process to
  - Increase reward
    - Premium, Expected profit, Number of policies
  - Reduce risk
    - PML, Tail Conditional Expectation (TCE), Probability of Ruin
- Benefits
  - Limit growth of PMLs while maintaining overall portfolio premium growth
  - Reduce the risk of "Over the Top" events
  - Target dilutive pricing in areas of large exposure concentrations and natural peril risk
  - Select areas for profitable growth






# **Portfolio Optimisation – Financial Crisis**

- Most volatile of the 5 steps in the Catastrophe Control Cycle
- Reduced investment returns are putting strain on profits
  - Insurers are indicating (as at early Nov 08) impending price increases
- People could tend to shop around on renewals
  - Expect increased non-renewals
  - New business expenses could increase
- Price elasticity will change
  - Market will see greater movement between insurers
  - Effect of small price adjustments will disappear
- Optimisation measures may need to change
  - Eg. Use Probability of Ruin instead of APRA MCR
- Asset reductions will alter MCR calculation and hence optimisation metrics



# Conclusions

- The Financial Crisis could have a major impact on the successful use of catastrophe modelling for insurance companies
- The Black Box approach does not work here and the potential impact across all areas of catastrophe risk should be reviewed in a comprehensive manner
- The Catastrophe Control Cycle offers a useful framework on which to base such a review and to manage catastrophe risk





### **Questions and Discussion**

# Will Gardner

Head of Aon Re Services Asia Pacific will.gardner@aon.com.au (02) 9650-0390