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Abstract

The purpose of this paper is to explore the consequences of frequent valuation of long tailed
classes, using various strategies for assumption setting.

A simple simulation of a long tailed portfolio was used to compare the consequences of applying
different valuation frequencies and assumption setting strategies, including

 Annual;

 Quarterly with no assumption changes;

 Quarterly, changing assumptions only if there is significant change in experience;

 Quarterly with moving average assumptions;

 Quarterly with an adaptive reserving approach.

It was found that the nature of the portfolio, its size, the valuation models employed, and the
specific superimposed inflation environment affecting the portfolio, will all have a large influence
on the prediction errors of any quarterly updating approach. The framework and analysis
presented in this paper is one way that objective decisions can be made about the appropriate
valuation frequency for a particular portfolio.

Keywords: Reserving, frequency, long tailed classes, annual, quarterly.
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1 Introduction

Long tail classes have features that make them difficult to value. In particular the low
frequency, high severity nature of the claims in long tail classes gives rise to highly
variable claims data. Further, the fact that claims in these classes show, on average, long
delays to settlement also adds to the difficulty.

A challenge for an actuary valuing a long tail portfolio is to detect any systemic changes
affecting the portfolio amongst the high claims volatility. Long tail classes are subject
to a number of environmental influences that impact on the value of liabilities, such as
business cycles, changes in claimant behaviour and judicial decisions. These
environmental influences often result in superimposed inflation in the portfolio.

The difficulty of detecting and modelling any underlying systemic changes in the
presence of the claims volatility raises the question of how frequently one should value
long-tail classes. In other words, if claims volatility is high, how much additional data is
needed before meaningful changes can be made to a valuation model?

This is the question that is explored in this paper.

1.1 Frequency of Valuations

Long tailed classes are typically subject to an annual valuation which involves updating
the valuation models and their assumptions. Such a valuation is considered a “full
valuation” and involves significant actuarial input.

However estimates of liabilities are often required on a more frequent basis. For
example, APRA requires that insurers provide updates of their insurance liabilities on a
quarterly basis.

Additionally, reporting time pressures often mean that the full valuation is carried out at
a date prior to the Company’s reporting date. In these cases, the full valuation will be
“rolled-forward” to the reporting date providing that the intervening claims experience
does not indicate that this is an unreasonable thing to do.

The question of how frequently one should value long tail classes raises impacts on two
important practical issues:

 If one is preparing interim valuations between the annual cycles of “full
valuations” how much value is there in performing anything more than a roll-
forward of the most recent annual valuation? If one tries to take account of the
intervening claims experience are you more likely to be responding to claims
volatility rather than picking up systemic changes?

 If an actuary prepares the annual valuation prior to the Company’s reporting date,
what is the magnitude of the potential prediction errors that can arise?
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1.2 Aim and Approach

The aim of this paper is to try and answer the questions raised above.

The approach taken was one of simulation. A simple simulation of a long tailed
portfolio was performed with the aim of creating a large number of datasets each
containing a “completed” triangle of claims data. Each simulated dataset contained both
claims variability and some systematic change.

The claims simulation models were based on data from an Australian Motor Bodily
Injury portfolio. The models were parameterised to reflect the claim payment patterns
and claims volatilities observed in this portfolio.

The systematic changes were simulated by using models of superimposed inflation.
Three different models of superimposed inflation were used each one representing a
different scenario about how superimposed inflation may evolve over the course of the
year. The scenarios were:

 A stable environment – where there was about a two in three chance that
superimposed inflation will not change by more than 3% in a year;

 A variable environment – where superimposed inflation is modelled so there is
about a two in three chance that superimposed inflation will change by more than
6% in a year; and

 A trend environment – in which a deterministic 5% p.a. trend in superimposed
inflation was added to the variable environment.

Having simulated a large number of datasets under the three different superimposed
inflation scenarios the prediction error of different quarterly valuation strategies was
measured. The prediction error was taken to be the difference between the true value of
the liabilities and the value of the liabilities as predicted by the quarterly valuation
model.

The quarterly valuation strategies that were tested were:

 Basic roll-forward – in this method, no modifications were made to the future
projected cashflows from the previous annual valuation. There were no changes
made to the ultimate incurred losses and the outstanding claims were simply the
sum of the expected forecast cashflows from the previous annual valuation less
the expected claim payments between the previous annual valuation and the
current quarterly balance date.

 Full Roll-forward – where the projections made at the previous annual valuation
were adjusted for any differences between actual and expected for the number of
claim reports and claims closures. This means applying the same model
parameters as estimated at the last annual valuation to the latest available data.

 Moving average – remodelling was carried out each quarter using a moving
average of historical experience. Smoothing was carried out on the estimated tail
parameters.
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 AvE Threshold – This involved performing a full roll-forward, but with
remodelling and assumption changes if there was a significant change in
experience. A significant change in experience involved the deviation of actual v
expected claim amounts above some predefined threshold. Any required
remodelling was carried out using the moving average method.

 Adaptive Filtering – This involved modelling the data with a regression function
and updating the parameters using the Kalman Filter (Kalman, 1960; De Jong and
Zehnwirth, 1983). This approach is a form of dynamic stochastic modelling.
Others have used these types of methods for automatic reserving with
considerable success (McGuire, 2007).

The purpose of this exercise was to compare the prediction errors of the roll-forward
methods with the remodelling methods at each quarter over the course of a year. Any
reduction in prediction error is a measure of the value of the remodelling process. By
examining how the prediction error changes over the course of the year, an indication of
the value of remodelling at different time intervals is given.
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2 Methods

In the following section details are provided about:

 The claim models used to simulate the datasets;

 The superimposed inflation models used to generate different superimposed
inflation scenarios;

 Simulation of datasets;

 The different valuation strategies used; and

 How prediction error was measured when the valuation strategies were applied at
quarterly intervals over the course of a year.

2.1 Claim simulation models

The claims simulation models were based on data from an Australian Motor Bodily
Injury portfolio covering the years 1978 to 2007.

Two claim simulation models were developed, one based on a Payments Per Claims
Incurred (PPCI) model and the other on a Payments Per Claim Finalised (PPCF) Model.

2.1.1 PPCI Model

This model has been adapted from the one presented in Taylor (2000). The PPCI in a
particular accident quarter, i, and development quarter, j are defined as:

PPCIij = Cij/Ui 2-1

where Cij are the gross claim payments (inflation adjusted) in accident quarter i and
development quarter j and Ui is the estimated ultimate number of claims incurred in
accident quarter i.

It was assumed that the PPCI were log-normally distributed and that the pattern of PPCI
followed a Hoerl curve (De Jong and Zehnwirth, 1983; Wright, 1990). The model had
the following form:

0 1 2log log( 1) ( , ) ( ), 0,1,...ijPPCI j j i p j j           2-2

where0, 1 and 2 are parameters assumed to be fixed over time, (i, p) is a term to
recognise superimposed inflation in accident quarter i and experience quarter p(= i + j)
and (j) is a normally distributed error term which is stochastically independent.

A number of different models were used to describe the evolution of (i, p) and these
are discussed in Section 2.2.

Figure 1 shows a plot of E[PPCIij] as a function of development quarter assuming that
the superimposed inflation term equals zero. Note that the calculation of E[PPCIij]
requires the following bias correction:
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0 1 2[ ] exp[ log( 1) ( , ) 1/ 2 [ ( )]]ijE PPCI j j i p Var j          2-3

The variance of the PPCI data, Var[(j)] was described by a function which varied by
development quarter. The relative variance (Var[(j)] / Var[(j=0)] ) at each j is shown
in Figure 2.
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Figure 1 - Plot of E[PPCIij] for the PPCI model with parameters 0 = 4.998, 1 =

1.660, 2 = -0.115 and (i, p) = 0.
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Figure 2 - Plot of the relative variance of log(PPCI)

Var[(j=0)] was assumed to depend on the size of the portfolio that was modelled. For
the Large Portfolio PPCI Model Var[(j=0)] = 0.068736. This was based on
measurements from a portfolio which had an ultimate number of claims incurred per
annum of 1000. This assumption, combined with the relative variance function shown
in Figure 2 gave coefficients of variation for PPCI values which varied from 27% in
development period 0 up to 100% in development period 60 and later. The coefficient
of variation of PPCIij is given by the following relationship:
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[ ( )][ ] 1Var j
ijCV PPCI e   2-4

For our Small Portfolio PPCI Model, Var[(j=0)] was assumed to be 4 times larger
and thus relates to a portfolio which is about one quarter of the size of the Large
portfolio.

A model of ultimate claim numbers was not developed for the PPCI model and hence
forecast payments were made assuming a fixed and equal number of claims for each
accident quarter. This allowed the focus to remain on the ability to update the PPCI
assumptions, rather than the claim numbers assumption.

2.1.2 PPCF Model

This model is based on a number of GLM models that were fitted to individual claim
data from a motor bodily injury portfolio. The models were developed as part of a
reserving exercise for one of Taylor Fry’s clients.

The PPCF model actually consists of three sub-models:

 Average payments per claim finalised;

 The probability a claim finalises in a particular quarter; and

 A model of claim notifications.

2.1.2.1 Average payments per claim finalised model

The PPCF in a particular i and j are defined as:

PPCFij = Cij/ Fij 2-5

where Cij are the gross claim payments (inflation adjusted) in accident quarter i and
development quarter j and Fij number of claim closures in development period j for
accident period i.

In a similar manner to the PPCI model, the PPCF were assumed to be log-normally
distributed. The model had the following form:

0 1 2 3log max( 40,0) max( 95,0) ( , ) ( )itPPCF t t t i p t             2-6

where t is the operational time at finalisation which is defined as the proportion of all
claims incurred for the relevant accident quarter that have been closed at the
development quarter of finalisation.

Figure 3 shows a plot of E[PPCFit] as a function of operational time assuming that the
superimposed inflation term equals zero. Again a bias correction of the same form as
that used for the PPCI model is needed to calculate E[PPCFit].

The coefficient of variation of the PPCF data was described by the following function:
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Var[(t)] was derived from 2-7 using an equation with the same form as 2-4.
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Figure 3 - Plot of E[PPCFit] with parameters 0 = 7.3942, 1 = 0.07559, 2 = -

0.05042, 3 = 0.17272 and (i, p) = 0.

The following figure illustrates how the co-efficient of variation of PPCF vary by
operational time when Fit = 1.
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Figure 4 - Plot of the coefficient of variation of for a single finalised claim at

different operational times
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2.1.2.2 Probability of claim finalisation model

Finalisation rates (PRFij) were defined as follows:

 3ij ij ij ijPRF F O R  2-8

where Fij is the number of claim closures, Oij is the number of claims open, and Rj is the
number of claims reported. The term involving the factor of 1/3 allows for the fractional
exposure of newly reported claims to finalisation.

Finalisations were simulated from a binomial distribution where the number of claims
available to be finalised (the exposure) is given by the denominator in 2-8 and

     
     
     
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I j I j I j
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
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
     

  
     

2-9

where  ; ,m x u v =   min ,max ,v u x .

A plot of the expected value of the finalisation rates as a function of development
quarter is shown in the following figure.
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Figure 5 - Finalisation rates with 0 = -1.618, 1 = -0.9339, 2 = -0.3346, 3

= -0.0601, 4 = -0.3994, 5 = 0.1072, 6 = -0.0068, 7 = -0.0188, 8 = -

0.0212, 9 = -0.0354.
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2.1.2.3 Claim notification model

Claim notifications were modelled as a Gamma-Poisson mixture distribution with:

~ Poissonij i ijR E  

~ Gamma , 1
1

ij

ij


 



 
 

 
,

where Ei = number of vehicles registered in accident quarter i;

 = 1.3, and

 0 1 2log ( 0) 0 log( 1)ij I j I j j         2-10

A plot of E[Rij] as a function of development quarter is shown below for a portfolio with
2 million motor vehicles registered
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Figure 6 - A plot of E[Rij] with 0 = -8.3739, 1 = -6.0537, 2 = -2.9110 and Ei

= 2 million.

Simulations which are referred to as the Large Portfolio PPCF Model are from a
portfolio with 2 million vehicles. Those referred to as the Small Portfolio PPCF Model
are from a portfolio with 0.5 million vehicles.

2.2 Models of superimposed inflation

The equations used to simulate PPCI and PPCF included a term, (i, p), for
superimposed inflation in accident quarter i and experience quarter p(= i + j).
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This term was assumed to follow a random walk with drift of the form:

1k k Z       2-11

where k = i or p,  = drift,  is the standard deviation of the random walk, and Z is a
standard normal random variable. When k = p I am modelling superimposed inflation
that varies by payment quarter (payment quarter SI) and when k = i I am modelling
superimposed inflation that varies by accident quarter (accident quarter SI).

The purpose of this model is to simulate how superimposed inflation may change over
the course of a year. Without loss of generality, I have chosen a base of zero so that
(i, p) was set equal to 0 for all p ≤ p` where p` is the last quarter prior to the start of the
year. During the course of the year, the superimposed inflation term is assumed to
evolve in accordance with 2-11.

Three different sets of parameters are used in 2-11 to represent different scenarios. The
scenarios were:

 A stable environment –  = 0,  = 0.016. In this environment there was about a
two in three chance that superimposed inflation will not change by more than 3% in
a year. Although this environment is labelled “stable” it does not mean that
superimposed inflation is static – just that it has lower variability compared to the
other scenarios.

 A variable environment –  = 0,  = 0.032. There is about a two in three chance
that superimposed inflation will change by more than 6% in a year; and

 A trend environment –  = 0.0125,  = 0.032. Here a 5% p.a. trend has been
added to the variable environment.

An alternative superimposed inflation model for the stable environment was used in
some simulations. This model called the random jump model assumed that at each
quarter there was a 25% chance of a +2.5% change in (i, p), a 25% chance of a -2.5%
change and a 50% chance of no change. In this model, there is about a 75% chance that
superimposed inflation will not have changed by more than 2.5% over the course of the
year.

2.3 Simulation of datasets

By combining the claim simulation models (Section 2.1) and superimposed inflation
models (Section 2.2) a large number of datasets were simulated. In these datasets, data
prior to p`, which represents the last quarter prior to the start of the year of interest, were
simulated without any claims volatility (process error) and assuming that superimposed
inflation was zero. Data subsequent to p` did include process error. While superimposed
inflation was assumed to evolve according to the models described in Section 2.2 for a
period of 1 year i.e. from p` to p`+ 4.
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The decision to exclude process error and variation in superimposed inflation from the
data prior to p` was so that all valuation modelling methods (discussed below) yielded
the same estimated value for the outstanding liabilities when applied to the data up to
p`. In other words, the data have been simulated so that no matter what valuation
method is used, we are able to get a true picture of the stable and unchanging claim
generating process that has been in existence up until p`. Thus there is a single
outstanding claims estimate at p`. This estimate is often referred to as the previous
annual valuation result. The purpose of this was to shift the debate away from the
accuracy of method used for the base valuation.

Then after p`, process error and systematic changes (superimposed inflation) are
introduced. The aim then, is to see how well the different valuation strategies are able to
pick up the systematic changes amongst the claims volatility as they evolve over the
course of the year.

I have not simulated any further change in superimposed inflation beyond experience
quarter p`+ 4 as the last valuation date of interest is p`+ 4 and obviously no valuation
technique is able to pick up systemic changes that occur after the valuation. This means
that the numerical results compare the relative reliability of different approaches, not the
absolute reliability or error.

2.4 Valuation methods
There are 5 basic valuation strategies that are applied to the dataset at quarterly intervals
from p`+1 to p`+ 4. In each case the valuation method was applied to the size
components of the PPCI and PPCF models (that is PPCIij and PPCFij ) only. That is,
claim number and finalisation models were not updated – for each quarterly valuation,
model assumptions for these models were retained from the previous annual valuation.
Obviously systemic changes could have an impact on numbers and finalisation rates.
However in the interest of keeping things as simple as necessary, I have focussed only
on superimposed inflation in the size components.

2.4.1 Basic roll-forward

In this method, no modifications are made to the future cashflows or ultimate incurred
losses from the previous annual valuation result.

2.4.2 Full Roll-forward

Here no modifications are made to the model parameters that were estimated at the
previous annual valuation, however new cashflow forecasts are made which take
account of the actual number of claim reports and open claims at the valuation date.

2.4.3 Moving average

In this method E[PPCIj] or E[PPCFj] values at each j are estimated by averaging actual
PPCIj or PPCFj values from the historical data. Two different averaging periods were
used; the past 16 experience quarters and the past 8 experience quarters.

For both models a seven development period moving average technique was used to
smooth estimates of E[PPCIj] and E[PPCFj] in the tail.
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2.4.4 AvE Threshold

This involved performing a full roll-forward, but with remodelling and assumption
changes in each individual cell only if the magnitude of (actual experience/ expected
experience – 1) exceeded some threshold in the cell. Two different thresholds were
used: a high threshold of 50% and a low threshold of 30%. A moving average
smoothing technique was applied to the claims experience in the tail before the method
was applied.

Any required remodelling was carried out using the 16 quarter moving average method.

An alternative method would have been to vary the threshold by development quarter so
that a larger threshold was applied to the more volatile tail. This would be a more
appropriate method in practice. But for current purposes, the use of the simpler method
is not expected to change the qualitative conclusions of this study.

2.4.5 Adaptive Filtering

The moving average techniques applied above pool measurements from a number of
experience quarters in an attempt to “see through” the claims volatility to detect the
underlying systemic movements. A moving average involving many experience
quarters will be less sensitive to the claims volatility but will be slower at picking up
any systemic changes. Conversely, an average involving less experience quarters will be
more sensitive to claims volatility but will be quicker at picking up any systemic
changes that occur.

When using moving average valuation techniques the actuary is required to use
judgement and knowledge of the portfolio at hand to decide how many periods of data
should be used in the average.

An alternative to moving average techniques are adaptive filtering techniques. In
essence, these techniques also produce weighted averages of parameter estimates from
the current and past data quarters. However the weight that is assigned to current and
historical data quarters depends on both the expected claims volatility and expectations
about how the parameter estimates may move. Adaptive filters are formal statistical
methods of trying the balance the need to identify systemic changes with the need to
pool the results from many time periods.

The adaptive filter that has been used in this paper is known as the Kalman Filter
(Kalman, 1960; De Jong and Zehnwirth, 1983). Details of the method can be found in
Taylor (2000) and McGuire (2007).

To apply the Kalman Filter, PPCI and PPCF have been modelled using the regression
functions 2-2 and 2-6. The Kalman Filter was then used to update the regression
parameters at each quarterly valuation.

Two different versions of the Adaptive Filter were used: a low variance filter which
was specifically calibrated for the stable environment and a high variance filter
which was specifically calibrated for the variable environment. The low variance filter
was applied in the case of the Stable environment and the low variance filter was
applied in the case of the Variable and Trend environments.
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2.5 Prediction Error

2.5.1 Mean Squared Error of Prediction

Having applied various valuation strategies at quarterly intervals over the course of a
year, the prediction errors of each of the strategies was then compared at each quarter.
Prediction error was measured using the following procedure:

 For each model and superimposed inflation scenario simulate 100 datasets as
described in Section 2.3.

 At each quarter p = p`+ 1, p`+ 2, p`+ 3, and p`+ 4 apply one of the valuation
methods of Section 2.4 using only the data available at the time of valuation.

 At each quarter estimate the outstanding claims liability that is predicted by each
valuation model in relation only to payments that occur after p`+ 4 and in relation
to accident quarters i  p`. Each estimate is denoted Ep,m,s where the subscripts m
differentiates the estimate by model, and the subscript s differentiates the estimate
by simulated dataset.

 For each dataset determine the true outstanding claims liability in relation to
payments that occur after p`+ 4 and in relation to accident quarters i  p`. Denote
these Ls.

 The prediction error for each simulated dataset is then calculated as Ls - Ep,m,s.
The set of prediction errors created from all simulated datasets gives an estimate
of the distribution of the prediction error.

 One summary statistic that is used to quantify the prediction error is the Root
Mean Squared Error of Prediction (RMSEP) which is defined as:

100
2

, ,
1

,

( )

100

s p m s
s

p m

L E

RMSEP 






2-12

In this paper, the RMSEP is usually expressed as a percentage of mean value of
Ls.

There are a couple of points to make about this process. First, the outstanding liability is
always measured in relation to payments made after p`+ 4. The intention of this choice
is to illustrate how the ability to estimate this quantity changes as more data becomes
available over the year. To do this it is preferable to always measure prediction error in
relation to the same quantity.

Second, in Section 2.2 I mentioned two different types of superimposed inflation:
payment quarter SI and accident quarter SI. When we are considering payment quarter
SI, the RMSEP is measured in relation to all past accident years. However when we are
considering accident quarter SI, the RMSEP is measured in relation to the accident
quarters that are affected. In all simulations the accident quarters that were affected are:
i = p`- 3, p`- 2, p`- 1 and p`. In other words, when accident year SI emerges it is
assumed to do so 3 quarters prior to the last full valuation (p`).
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And finally, the estimate of prediction error focuses only on the ability to make central
estimates of undiscounted claim costs that have been adjusted for normal economic
inflation. The impact of discounting, future economic inflation, changes in
superimposed inflation occurring after p `+ 4, risk margins and expenses have been
ignored.

2.5.2 Annual valuation update error

Another quantity of interest is the annual valuation update error. If an actuary was to
adopt a roll-forward valuation strategy for quarterly valuations, but with a full annual
valuation at quarter 4, there is the possibility of a large movement in liabilities when
moving from the roll-forward valuation at quarter 3 to the annual valuation at quarter 4
if systemic changes have emerged during the year.

We have defined the update error for a particular quarterly valuation method, m, to be:

E p`+ 4,m=a,s - E p`+ 3,m,s 2-13

where the first term denotes the liability estimate made at quarter 4 using the annual
valuation methodology.

Determining an appropriate value for E p`+ 4,m=a,s is problematic. Most annual valuations
are a mixture of judgement and modelling and it is not possible to replicate this over the
each of the 1000s of datasets created for this study. Additionally, it is not suitable to use
the actual liability Ls as there is some prediction error for all valuation methods.

We have used E p`+ 4,m,s as predicted by the Adaptive Filter as a proxy for E p`+ 4,m=a,s. The
reason for this was that the adaptive filter consistently outperformed all the other
modelling methods used in this study.

I note however that if one does use Ls in place of E p`+ 4,m=a,s there is no change to the
conclusions that have been drawn by this study.
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3 Results

The results of this study are presented in the following three sub-sections:

 Prediction errors throughout the year

 Annual valuation update errors from different quarterly valuation strategies

 Prediction error resulting from early valuation.

The first of these subsections compares the prediction errors of the roll-forward
methods with the remodelling methods at each quarter over the course of a year under a
number of different superimposed inflation scenarios.

The second of the subsections then looks at the likely distribution of liability
adjustments (update errors) when moving from a 3rd quarter roll-forward valuation to a
4th quarter full valuation.

While the final section looks at the distribution of prediction errors that can occur under
different superimposed inflation scenarios when the annual valuation is carried out one
quarter prior to the balance date.

3.1 Prediction errors throughout the year

3.1.1 Stable Superimposed Inflation scenario

Two different models were used to represent the stable superimposed inflation scenario.
One was a random walk model and the other a random jump model (Section 2.2). No
qualitative differences were found between the two models and I have only presented
the results of the random walk model here.

3.1.1.1 Payment quarter SI

The following two figures show the prediction errors throughout the year for each of the
quarterly valuation methods in an environment with stable payment quarter SI.

For the large portfolio models, the difference in RMSEP between the roll-forward
methods and the remodelling methods is, in general, not appreciably different at all
quarterly valuation dates. This is true for both the PPCI and PPCF models. In all
figures, the prediction error is the same at each quarter for the basic roll-forward
because with this method, the projected liability remains unchanged at each valuation
quarter.

The exception is when a modelling method overly sensitive to claims volatility is used.
For example the 8 period moving average shows increasing prediction error as the time
since the last full valuation (valuation quarter = 0) increases.

Note that in the figures, all methods give the same prediction error at valuation quarter 0
(the last full valuation date). The reasons for this were discussed in Section 2.3.
Additionally, only a basic roll-forward is shown for the PPCI model. This is because for
this model no attempt was made to forecast claim report volatility. Such volatility is
expected to have very little influence on the results of the PPCI analysis.
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Figure 7 - Large portfolio: RMSEP for different valuation methods in a stable

environment (payment quarter SI)
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However, for the smaller portfolio models, the act of remodelling often led to greater
prediction errors than would be obtained by a roll-forward. This was particularly
apparent for the PPCI model. The reason for this is that the volatility of the claims data
increases as the portfolio gets smaller and it appears that most of the quarterly
revaluation methods are responding inappropriately to the increased noise.

Of particular interest for the small portfolio PPCF model is that the results of the basic
roll-forward are clearly inferior to the results of the “full” roll-forward. This is
particularly visible at valuation quarters 3 and 4. In the figure it is difficult to see the
results of both roll-forwards. The basic roll-forward results are a horizontal line just
below the 13% line, while the full roll-forward results lie underneath the low variance
adaptive filter.

Out of the remodelling techniques, the adaptive filtering approach was seen to have the
lowest prediction error.

3.1.1.2 Accident quarter SI

The results for accident quarter SI tend to be qualitatively similar to those for payment
quarter SI (Figure 9 and Figure 10). Of interest in the small PPCF model is that again
the full roll-forward clearly outperforms the basic roll-forward. Again the results of the
full roll-forward are hidden behind the adaptive filter results. The outperformance is
slightly more pronounced in the accident quarter SI results as these results relate only to
the latest accident year in the previous annual valuation while those for payment quarter
SI relate to all past accident years. Changes in the number of open claims have a greater
effect on accident years which are less developed.

3.1.1.3 Summary

Overall, in a stable environment an appropriate roll-forward strategy gave MSEP that
were not appreciably worse than any remodelling method. In the case of a small
portfolio PPCF model, an appropriate roll-forward strategy meant a full roll-forward
making allowance for the actual number of open claims.

In cases where the remodelling method was too responsive to claim data volatility, the
remodelling method gave worse prediction errors than the roll-forward strategy. This
was most apparent in the small portfolio PPCI model where all remodelling strategies
apart from the Adaptive Filter gave worse RMSEP over the course of the year.



Valuation frequency for long tail classes

20

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

0 1 2 3 4

Valuation Quarter

R
M

S
E

P

Basic Ro llfo rward AvE Threshold - High

AvE Threshold - Low M oving Average - 16 period

M oving Average - 8 period Adaptive Filter

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

0 1 2 3 4

Valuation Quarter

R
M

S
E

P

Basic Rollfo rward RollForward

AvE Threshold - High AvE Threshold - Low

M oving Average - 16 period M oving Average - 8 period

Adaptive Filter

Figure 9 - Large portfolio: RMSEP for different valuation methods in stable

environment (accident quarter SI)
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3.1.2 Variable and Trend Superimposed inflation scenarios

For the large portfolio models, as the magnitude of the underlying systemic changes
increases, the performance of the roll-forward strategy starts to decline relative to the
remodelling strategies. This is illustrated in Figure 11 on the following page for the
Large PPCI model and in

Figure 13 for the Large PPCF model. For both models, under both the variable and
trend SI scenarios, the MSEP of the remodelling techniques tend to decreases as the
time since the last annual valuation increases. This is particular noticeable in quarters 3
and 4. In comparison the prediction error of the roll-forward technique remains
constant.

Note however that this statement is not true for the remodelling strategies which rely on
the moving average when faced with accident quarter SI. Because this SI is emerging
only in the most recent accident year (as at the previous valuation), and because the
moving average techniques fit a separate parameter for each development quarter, this
emerging SI effects PPCI parameters in the moving average model up to development
quarter 7 only. In contrast, the regression function used in the adaptive filter responds to
the emerging accident year SI by increasing PPCI estimates at all future development
quarters.

However for the small portfolio models, the roll-forward method is equal or superior to
all remodelling strategies apart from the Adaptive Filter (Figure 12 and

Figure 13).
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Figure 11 - Large portfolio PPCI: affect of SI environment on RMSEP
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Figure 12 - PPCI on small portfolio: affect of SI environment on RMSEP

Stable – payment quarter SI Stable – accident quarter SI

Variable – payment quarter SI

Trend – accident quarter SITrend – payment quarter SI

Variable – accident quarter SI



Valuation frequency for long tail classes

24

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

0 1 2 3 4

Valuation Quarter

R
M

S
E

P

12.0%

13.0%

14.0%

15.0%

0 1 2 3 4

Valuation Quarter

R
M

S
E

P

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

0 1 2 3 4

Valuation Quarter

R
M

S
E

P

12.0%

13.0%

14.0%

15.0%

0 1 2 3 4

Valuation Quarter

R
M

S
E

P

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

0 1 2 3 4

Valuation Quarter

R
M

S
E

P

Basic Ro llforward RollForward

AvE Thresho ld - High AvE Threshold - Low

M oving Average - 16 period M oving Average - 8 period

Adaptive Filter

12.0%

13.0%

14.0%

15.0%

0 1 2 3 4

Valuation Quarter

R
M

S
E

P

Basic Rollfo rward RollForward

AvE Thresho ld - High AvE Thresho ld - Low

M oving Average - 16 period M oving Average - 8 period

Adaptive Filter

Figure 13 - PPCF: affect of payment quarter SI environment on RMSEP
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3.1.3 Example of model fitting process

In the final part of this subsection, an example of the model fitting process is given. The
figures below show the model updating process in 2 quarterly valuations following the
previous annual valuation. The dataset used has been generated in the Trend – payment
quarter SI environment.

The first figure shows how in the face of quarter 1 claims experience, the 16 period
moving average and adaptive filter models are updated.
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Figure 14 - Actual and fitted data in the first payment quarter after the

previous annual valuation

In the figure the quarter 0 model predictions are identical. These are the predictions of
the annual valuation. After 1 quarter of data there has been little movement in the model
predictions.

Figure 15 shows the responses of the different modelling methods to the 2nd quarter of
data.
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Figure 15 - Actual and fitted data in the second payment quarter after the

previous annual valuation

After the second quarter of data we are starting to see a response of the filter to the trend
environment. However the moving average model remains largely unchanged.

3.2 Annual valuation update errors from different quarterly valuation strategies

One way to get a feel for the practical implications of the measurements made in the
previous section is to use those measurements to estimate the likely distribution of
liability adjustments when moving from a 3rd quarter roll-forward valuation to a 4th

quarter full valuation. These liability adjustments are defined as update errors in Section
2.5. As discussed in that Section, we have used the Adaptive Filter estimates of liability
at quarter 4 as a proxy for a 4th quarter full valuation. This was justified on the grounds
that out of all the valuation methods used in this study, it was the one that consistently
gave the lowest prediction error, particularly at quarter 4.

The results of this analysis are shown in 4 tables which follow on the next few pages.
Each table shows summary statistics from the estimated annual update error
distributions. In each table the update error value is expressed as a % change from the
3rd quarter result. Results are shown for payment quarter SI models only. Qualitatively
similar results are found for the accident quarter SI models.

Table 3.1 shows a summary of the update errors from the large portfolio PPCI model.
The first column of the table shows that under a stable environment the update error
distributions are similar for all valuation methods. This is consistent with the results of
Figure 7 where prediction errors were similar across all methods at quarters 3 and 4.
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However as we move to the rightmost columns of the table which show the update
errors under the Variable and Trend superimposed inflation scenarios, the update error
distributions start to change. Under the Variable scenario and using a roll-forward
quarterly valuation strategy there is a 25% chance that the annual valuation will result in
an increase in reserves of 3% or more and a 10% chance that the increase will be 5% or
more. These increases correspond to the 75th and 90th percentiles of the update error
distribution (shown at P75 and P90 in the table). Had a full valuation been carried out at
quarter 3 (by using the adaptive filter) the size of the increases corresponding to the 75th

and 90th percentiles are estimated to be 1% and 2%, respectively.

Under the trend scenario, there is a 25% chance that the annual valuation update error
will be more than 5%, and a 10% chance the revision will be more than 8%. The
corresponding errors using the adaptive filter for the quarter 3 valuation would have
been 2% and 3%, respectively.

Table 3.1 – Large Portfolio PPCI: update error summary statistics
Valuation Method

Stable - rw Stable - jump Variable Trend

Basic Rollforward 0% 0% 0% 3%
AvE Threshold - High 0% 0% 0% 2%
AvE Threshold - Low 0% 0% 0% 2%
Moving Average - 16 period 0% 0% 0% 2%
Moving Average - 8 period 0% 0% 0% 1%
Adaptive Filter 0% 0% 0% 1%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 1% 3% 3% 3%
AvE Threshold - High 1% 2% 3% 3%
AvE Threshold - Low 1% 2% 3% 3%
Moving Average - 16 period 1% 2% 2% 2%
Moving Average - 8 period 1% 2% 2% 2%
Adaptive Filter 1% 2% 2% 2%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 1% 2% 3% 5%
AvE Threshold - High 1% 1% 2% 4%
AvE Threshold - Low 1% 1% 2% 4%
Moving Average - 16 period 1% 1% 2% 4%
Moving Average - 8 period 1% 1% 2% 3%

Adaptive Filter 1% 1% 1% 2%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 2% 3% 5% 8%
AvE Threshold - High 1% 2% 4% 6%
AvE Threshold - Low 1% 2% 4% 6%

Moving Average - 16 period 1% 2% 4% 5%
Moving Average - 8 period 2% 2% 3% 4%
Adaptive Filter 1% 2% 2% 3%

Mean

Standard Deviation

P75

P90
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Table 3.2 shows a summary of the update errors from the small portfolio PPCI model.
In a stable superimposed scenario, the update errors for the roll-forward and the
adaptive filter are similar. However, in the variable and trend environments, the update
error is reduced if the adaptive filter is used at quarter 3. The reduction in error that
results from performing a full valuation at quarter 3 is less in the small portfolio
compared to the large. This is a result of it being more difficult for a full valuation to
pick up systemic changes in a small portfolio. Evidence for this statement is the greater
bias at quarter 4 for all remodelling valuation methods in the small portfolio compared
to the large portfolio (results not shown).

Also of interest in Table 3.2 is the observation that the other valuation methods gave
worse update errors compared to the roll-forward. This is consistent with the results
shown in Figure 8.

Table 3.2 – Small Portfolio PPCI: update error summary statistics
Valuation Method

Stable - rw Stable - jump Variable Trend

Basic Rollforward 0% 0% 0% 2%
AvE Threshold - High -1% -1% -1% 0%
AvE Threshold - Low 0% 0% 0% 1%
Moving Average - 16 period 0% 0% 1% 1%
Moving Average - 8 period 0% 0% 0% 1%
Adaptive Filter 0% 0% 0% 0%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 1% 3% 3% 3%
AvE Threshold - High 3% 3% 4% 4%
AvE Threshold - Low 3% 4% 4% 4%
Moving Average - 16 period 3% 4% 4% 4%
Moving Average - 8 period 5% 5% 5% 5%
Adaptive Filter 1% 2% 1% 1%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 1% 2% 2% 4%
AvE Threshold - High 1% 2% 2% 3%
AvE Threshold - Low 2% 3% 3% 4%
Moving Average - 16 period 3% 3% 3% 4%
Moving Average - 8 period 4% 4% 4% 4%

Adaptive Filter 0% 1% 1% 2%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 2% 4% 4% 5%
AvE Threshold - High 3% 4% 4% 5%
AvE Threshold - Low 4% 4% 5% 5%

Moving Average - 16 period 4% 4% 5% 6%
Moving Average - 8 period 6% 6% 7% 7%
Adaptive Filter 1% 2% 2% 2%

Mean

Standard Deviation

P75

P90
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Tables 3.3 and 3.4 show summary statistics of the update errors for the Large portfolio
PPCF model and Small Portfolio PPCF model, respectively. Both PPCF models behave
similarly to the their equivalent PPCI model.

Table 3.3 – Large Portfolio PPCF: update error summary statistics

Valuation Method
Stable - rw Stable - jump Variable Trend

Basic Rollforward 0% 0% 0% 2%
RollForward 0% 0% 0% 2%
AvE Threshold - High 0% 0% 0% 2%
AvE Threshold - Low 0% 0% 0% 2%
Moving Average - 16 period 0% 0% 0% 2%
Moving Average - 8 period 0% 1% 0% 2%

Adaptive Filter 0% 0% 0% 1%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 2% 3% 4% 4%
RollForward 2% 2% 4% 4%
AvE Threshold - High 2% 3% 4% 4%
AvE Threshold - Low 2% 3% 4% 4%

Moving Average - 16 period 2% 3% 4% 4%
Moving Average - 8 period 3% 4% 4% 4%
Adaptive Filter 1% 2% 2% 2%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 1% 2% 3% 5%

RollForward 1% 2% 3% 5%
AvE Threshold - High 1% 2% 2% 5%
AvE Threshold - Low 2% 2% 3% 5%
Moving Average - 16 period 2% 2% 3% 5%
Moving Average - 8 period 3% 3% 4% 5%
Adaptive Filter 1% 1% 1% 2%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 3% 4% 5% 7%
RollForward 2% 4% 5% 7%
AvE Threshold - High 2% 4% 4% 6%
AvE Threshold - Low 3% 4% 4% 6%

Moving Average - 16 period 3% 4% 4% 6%
Moving Average - 8 period 5% 6% 6% 7%
Adaptive Filter 1% 3% 3% 3%

Mean

Standard Deviation

P75

P90
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Table 3.4 – Small Portfolio PPCF: update error summary statistics

Valuation Method
Stable - rw Stable - jump Variable Trend

Basic Rollforward 1% 1% 1% 2%
RollForward 0% 0% 0% 1%
AvE Threshold - High 0% 0% 0% 0%
AvE Threshold - Low 0% 0% 0% 1%
Moving Average - 16 period 1% 1% 0% 1%
Moving Average - 8 period 1% 1% 0% 1%

Adaptive Filter 0% 0% 0% 1%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 2% 3% 3% 3%
RollForward 1% 2% 2% 2%
AvE Threshold - High 3% 3% 3% 3%
AvE Threshold - Low 3% 3% 3% 3%

Moving Average - 16 period 3% 3% 3% 3%
Moving Average - 8 period 5% 5% 5% 5%
Adaptive Filter 1% 2% 1% 1%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 3% 3% 3% 4%

RollForward 1% 2% 2% 3%
AvE Threshold - High 1% 2% 1% 2%
AvE Threshold - Low 2% 2% 2% 3%
Moving Average - 16 period 3% 3% 2% 3%
Moving Average - 8 period 3% 4% 4% 4%
Adaptive Filter 1% 2% 1% 2%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 5% 5% 5% 6%
RollForward 2% 3% 3% 4%
AvE Threshold - High 2% 3% 3% 4%
AvE Threshold - Low 3% 4% 4% 5%

Moving Average - 16 period 3% 4% 4% 5%
Moving Average - 8 period 6% 6% 6% 6%
Adaptive Filter 2% 3% 2% 3%

Mean

Standard Deviation

P75

P90

3.3 Prediction error resulting from early valuation

The results of Section 3.1 tend to show that the prediction error of the roll-forward one
quarter out from the previous full valuation is similar to that of the best remodelling
method. This indicates that the prediction error that results from performing a valuation
one quarter prior to the required balance date would in many cases not be too different
to that from a full balance date valuation.

The four tables shown on the following pages summarise the prediction error
distributions one quarter out from the previous annual valuation in the case of payment
quarter SI. They show that the 75th and 90th percentile prediction error values for the
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roll-forward (basic and full) are never more than 1% from the best remodelling
methods.

Conversely, if one attempts to update a full valuation after one quarter, use of a method
overly sensitive to noise in the claim data can increase the prediction error. This is
illustrated for the Small Portfolio PPCI model in Table 3.6 where the 75th and 90th

percentiles of the 1 quarter prediction error are lowest for the roll-forward method,
while those of the 8 quarter moving average method are measurably larger.

Table 3.5 – Large Portfolio PPCI: distribution of prediction error 1 quarter after

full valuation
Valuation Method

Stable - rw Stable - jump Variable Trend

Basic Rollforward 0% 0% 0% 6%
AvE Threshold - High 0% 0% 0% 5%
AvE Threshold - Low 0% 0% 0% 5%
Moving Average - 16 period 0% 0% 0% 6%
Moving Average - 8 period 0% 0% 0% 5%
Adaptive Filter 0% 0% 0% 5%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 3% 4% 6% 6%
AvE Threshold - High 3% 4% 6% 6%
AvE Threshold - Low 3% 4% 6% 6%
Moving Average - 16 period 3% 4% 6% 6%
Moving Average - 8 period 3% 4% 6% 6%
Adaptive Filter 3% 4% 6% 6%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 2% 2% 4% 10%
AvE Threshold - High 2% 2% 4% 9%
AvE Threshold - Low 2% 2% 4% 9%
Moving Average - 16 period 3% 2% 4% 9%
Moving Average - 8 period 3% 2% 4% 9%

Adaptive Filter 2% 2% 4% 10%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 4% 6% 8% 13%
AvE Threshold - High 4% 6% 7% 13%
AvE Threshold - Low 4% 6% 8% 14%

Moving Average - 16 period 5% 7% 8% 14%
Moving Average - 8 period 5% 6% 8% 14%
Adaptive Filter 4% 7% 8% 14%

Mean

Standard Deviation

P75

P90
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Table 3.6 – Small Portfolio PPCI: distribution of prediction error 1 quarter after

full valuation
Valuation Method

Stable - rw Stable - jump Variable Trend

Basic Rollforward 0% 0% 0% 5%
AvE Threshold - High 0% 0% 0% 5%
AvE Threshold - Low 0% 0% 0% 6%
Moving Average - 16 period 0% 0% 1% 6%
Moving Average - 8 period 0% 0% 1% 6%
Adaptive Filter 0% 0% 0% 5%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 5% 6% 6% 6%
AvE Threshold - High 6% 6% 7% 7%
AvE Threshold - Low 6% 6% 7% 7%
Moving Average - 16 period 6% 6% 7% 7%
Moving Average - 8 period 6% 7% 7% 7%
Adaptive Filter 5% 6% 7% 7%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 4% 3% 4% 10%
AvE Threshold - High 4% 4% 6% 11%
AvE Threshold - Low 4% 5% 6% 12%
Moving Average - 16 period 5% 5% 6% 12%
Moving Average - 8 period 5% 5% 6% 12%

Adaptive Filter 4% 4% 6% 11%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 7% 9% 9% 15%
AvE Threshold - High 8% 9% 10% 16%
AvE Threshold - Low 8% 9% 10% 17%

Moving Average - 16 period 8% 9% 11% 17%
Moving Average - 8 period 9% 10% 12% 18%
Adaptive Filter 7% 9% 10% 16%

Mean

Standard Deviation

P75

P90
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Table 3.7 – Large Portfolio PPCF: distribution of prediction error 1 quarter after

full valuation
Valuation Method

Stable - rw Stable - jump Variable Trend

Basic Rollforward -1% 0% -1% 4%
RollForward -1% 0% -1% 4%
AvE Threshold - High -1% -1% -1% 4%
AvE Threshold - Low -1% -1% -1% 4%
Moving Average - 16 period -1% 0% -1% 4%
Moving Average - 8 period -1% 0% -1% 4%

Adaptive Filter -1% 0% -1% 4%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 5% 4% 7% 7%
RollForward 5% 4% 7% 7%
AvE Threshold - High 5% 4% 7% 7%
AvE Threshold - Low 5% 4% 7% 7%

Moving Average - 16 period 5% 4% 7% 7%
Moving Average - 8 period 5% 5% 7% 7%
Adaptive Filter 5% 4% 7% 7%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 3% 2% 4% 10%

RollForward 2% 1% 4% 10%
AvE Threshold - High 2% 1% 3% 9%
AvE Threshold - Low 3% 2% 3% 9%
Moving Average - 16 period 2% 2% 4% 9%
Moving Average - 8 period 2% 2% 4% 9%
Adaptive Filter 3% 1% 4% 9%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 6% 5% 9% 15%
RollForward 6% 5% 9% 15%
AvE Threshold - High 6% 5% 9% 15%
AvE Threshold - Low 6% 5% 10% 16%

Moving Average - 16 period 6% 5% 10% 16%
Moving Average - 8 period 7% 5% 10% 16%
Adaptive Filter 7% 4% 9% 15%

Mean

Standard Deviation

P75

P90
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Table 3.8 – Small Portfolio PPCF: distribution of prediction error 1 quarter after

full valuation
Valuation Method

Stable - rw Stable - jump Variable Trend

Basic Rollforward -2% -2% -2% 3%
RollForward -2% -2% -3% 2%
AvE Threshold - High -2% -2% -3% 2%
AvE Threshold - Low -2% -2% -2% 3%
Moving Average - 16 period -2% -2% -2% 3%
Moving Average - 8 period -2% -2% -2% 3%

Adaptive Filter -2% -2% -3% 2%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 11% 11% 12% 12%
RollForward 11% 11% 12% 12%
AvE Threshold - High 11% 11% 12% 12%
AvE Threshold - Low 11% 11% 12% 12%

Moving Average - 16 period 11% 11% 12% 12%
Moving Average - 8 period 12% 11% 13% 13%
Adaptive Filter 11% 11% 13% 13%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 6% 4% 7% 13%

RollForward 6% 5% 6% 12%
AvE Threshold - High 7% 5% 7% 13%
AvE Threshold - Low 7% 6% 7% 13%
Moving Average - 16 period 7% 6% 7% 13%
Moving Average - 8 period 7% 7% 8% 14%
Adaptive Filter 6% 5% 7% 12%

Stable - rw Stable - jump Variable Trend

Basic Rollforward 17% 18% 19% 26%
RollForward 17% 17% 18% 25%
AvE Threshold - High 17% 18% 18% 25%
AvE Threshold - Low 17% 18% 18% 25%

Moving Average - 16 period 17% 18% 18% 26%
Moving Average - 8 period 17% 19% 18% 26%
Adaptive Filter 17% 18% 18% 25%

Mean

Standard Deviation

P75

P90
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4 Discussion

4.1 The effect of claims environment and portfolio size on the prediction error of
different quarterly valuation methods

This study attempts to quantify a point that is well understood by actuaries. That is in
long tail classes it is difficult to measure underlying systemic changes in claims
experience amongst the volatility of the claims data. Because of this difficulty the value
of re-estimating liabilities at too frequent an interval is uncertain.

It was found that in a relatively stable superimposed inflation environment - an
environment where there was a two in three chance that annual superimposed inflation
would change by less than 3% in the year - that a quarterly valuation strategy that
involved re-modelling on a quarterly basis did not appreciably improve the prediction
error.

This was true for a number of quarterly re-modelling methods including:

 a 16 quarter moving average;

 a method in where remodelling occurred only once new claims experience
exceeded a predefined threshold; and

 A regression method where the parameters were updated by the Adaptive
(Kalman) Filter.

In fact, if the portfolio was small enough and/or the valuation method was particularly
sensitive to claims data volatility, then remodelling could lead to worse prediction
errors. For example, we found that an 8 quarter moving average would generally lead to
the worst prediction errors in a stable environment.

Also, in our small portfolio PPCI model - a model for a portfolio which experienced
about 250 motor bodily injury claims per annum - all quarterly remodelling techniques
that we tested, apart from Adaptive Filter method, gave worse prediction errors. This
indicated that these remodelling methods were inappropriate for this particular portfolio.
in that they were overly sensitive to claims data volatility.

However, if the claims environment was less stable then re-modelling tended to
decrease prediction error. This improvement was usually marginal in the first quarter
since the last full revaluation. However by the third quarter the improvement could be
significant. Again, for portfolios and models where the claims data volatility was high
enough to drown out the underlying systemic changes, then inappropriate modelling
techniques could lead to worse prediction errors. This was again seen in our small
portfolio PPCI model.

4.2 Alternative roll-forward methods

The most basic quarterly valuation strategy simply involves no adjustment to the
projected cash-flows from the previous annual valuation.
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An alternative method is to adjust any projections made at the annual valuation for
differences in the numbers of claim reports, claims closures, active claims etc compared
to what was projected.

We found that the latter approach gave superior results particularly when the portfolio
was small and/or the liability of interest relates to a relatively underdeveloped accident
period.

4.3 Superiority of the Adaptive Filter to other remodelling methods

An examination of the results in Section 3.1 shows that the Adaptive Filter tended to
outperform the other modelling methods.

This is to be expected for a number of reasons. Adaptive filtering methods are
specifically designed to detect a moving signal in noisy data. In essence they produce
weighted average of parameter estimates from the current and past data quarters.
However, the weight that is assigned to current and historical data quarters depends on
both the expected claims volatility and expectations about how the parameter estimates
will move. If the parameters are expected to move significantly from quarter to quarter,
then more weight will be given to newer data quarters. Alternatively, if claims volatility
is high then the weights are spread more evenly amongst old and new data quarters. In
all cases however newer data periods get more weight than older periods.

This contrasts to the moving average techniques where the weights tend to be all or
nothing – a past data quarter is either included in the average or it is not.

Also, adaptive filters use statistical reasoning to balance the need to identify systemic
changes with the need to pool over many data periods in order to deal with claims data
volatility. The other methods tend to do this in a more ad hoc way – the number of data
periods used in an average or the levels of the thresholds adopted tend to be determined
using judgement alone.

The adaptive filter that has been used in this study is the Kalman Filter. A limitation of
this tool is that it requires the assumption of normally distributed data. For this study the
limitation was not an issue because the payment data that we simulated was log-
normally distributed and by taking logs of the data it could be dealt with by the Filter.

However, in practice there tends to be problems in assuming that the data is log-
normally distributed. The main difficulty is the requirement for a bias correction which
results from modelling the log transformation of the data. The bias correction requires
accurate determination of the variance in different cells of the data triangle. The
variance of some cells can be difficult to determine (particularly in the tail of the
dataset) and this can lead to the use of inappropriate bias corrections.

Another difficulty is that the log-normal assumption may not always be appropriate for
the data at hand. For example, claim reports or finalisations can be difficult to model
with a normal or log normal assumption.

For these reasons in general it would be preferable to use alternative filters such as the
GLM filter (Taylor, 2008). This is an extension of the Kalman filter to certain members
of the Exponential Dispersion Family of distributions.
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4.4 Annual valuation update errors

A quarterly valuation method that does not pick up systemic changes as well as the
methods adopted for an annual valuation may lead to large step changes in the value of
liabilities when one moves from the 3rd quarter valuation to the 4th quarter full valuation.

We have termed such changes annual valuation update errors (Section 2.5.2) and these
were quantified in Section 3.1.3. We found that in a relatively stable superimposed
inflation environment, that an appropriate roll-forward procedure did not give
appreciably worse update errors at the 75th and 90th percentiles of the update error
distribution.

However, if an inappropriate quarterly remodelling strategy was chosen, the
inappropriate strategy could lead to worse update errors than if no remodelling was
done at all. However the magnitude of the update errors caused by remodelling tends to
be small: excluding the 8 period moving average method, under the stable scenario
there is a 90% chance that remodelling will cause an update error that is at most 2%
more than that obtained using an appropriate roll-forward.

When superimposed inflation becomes more variable or exhibits a clear emerging trend,
the roll-forward strategy did start to give larger update errors. The worst update errors
were seen in the trend environment (as expected). In a trend environment the largest
update error for a roll-forward at the 75th percentile was 5%. However had an annual
valuation remodelling methods been used at quarter 3 the equivalent update error would
have been 2%. So the difference in update errors at the 75th percentile was 3%. At the
90th percentile this difference increased to 5%.

There would be typically many influences on the decision about what if any quarterly
valuation strategy is adopted. However the above analysis seems to indicate that:

 Although remodelling methods can lead to increased update errors in some
environments, the magnitude of these errors for any reasonable remodelling
method appear to be small.

 The magnitude of update errors will increase as the claims environment becomes
more variable. Under the scenarios tested the difference in update errors between
a roll-forward strategy and a full remodelling strategy were at most 5% at the 90th

percentile. The magnitude of this error needs to be considered in the face of other
uncertainties that are faced at any valuation. For example, for liabilities that are
long tail in nature, how the systemic influences continue to evolve after the last
balance date will have a large impact on actual prediction errors. The impact of
these changes has not been considered in this study.

4.5 Errors associated with preparing an annual valuation one quarter prior to balance
date.

The results of this study indicate that remodelling with only one extra quarter of data at
best leads to a marginal improvement in the prediction error.

The improvement in prediction error was at most estimated to be around 1 to 2% at the
75th percentile. This suggests that for the models and scenarios tested in this paper, the
prediction error is not significantly increased by performing the valuation one quarter
early.
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4.6 Valuation approaches in practice

The current study does not explore potential behavioural bias effects (conscious or sub-
conscious) when actuaries update valuations. The analyses presented in this study
assume that the chosen updating method is applied in full and without any
subjective/judgemental adjustments. All such adjustments may have the potential to
make the results better or worse.

There may be circumstances in which the update approach that is adopted is probably
best tailored to the particular circumstances that have arisen. For example:

 a partial “freeze” on claim settlements in latest quarter due to operational
constraints, and/or

 known deficiencies in the data available for the latest quarter.

However, exploring these ideas was beyond the scope of the paper.

4.7 Measurement Framework

The nature of the portfolio, its size, the valuation models employed, and the specific
superimposed inflation environment affecting the portfolio, will all have a large
influence on the prediction errors of any quarterly updating approach. The framework
and analysis presented in this paper is one way that objective decisions can be made
about the appropriate valuation frequency for a particular portfolio.
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