

## Frequency of valuation for long tail classes

**Peter Mulquiney** 



# Introduction

- Long tail classes
  - Low frequency, high severity claims
    - Highly variable claims data
  - Subject to environmental influences
    - Changes in claimant behaviour
    - Changes in judicial decisions
- Challenge for actuary

- Detect systemic changes in presence of claims volatility

• How frequently should LT classes be revalued?



# Introduction

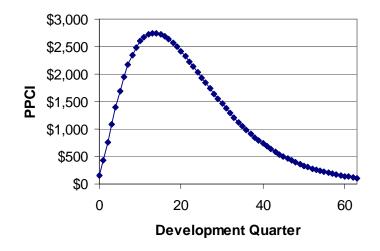
- Question about valuation frequency impacts on two practical issues:
  - For quarterly valuations
    - How much value is there is performing anything more than a simple **roll-forward** of the recent annual valuation?
  - For annual valuations
    - If an actuary prepares an annual valuation prior to the Company's reporting date (say 1 quarter early) what is the magnitude of potential prediction errors?



### **Overview**

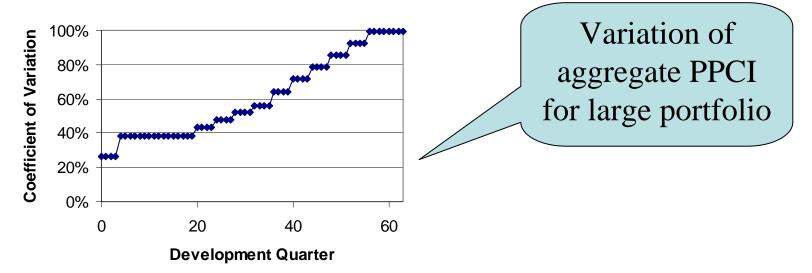
- Overview of Approach
- Some specific details of approach
- Results
  - 1. Effect of claims environment and portfolio size on prediction error of different quarterly valuation methods
  - 2. Annual valuation update errors
  - 3. Errors from preparing annual valuation 1 quarter prior to balance date




# **Overview of Approach**

- Simulate large number of datasets containing
  - Claims variability
    - Based on realistic models of claims in a motor bodily injury portfolio
  - Systemic changes
    - Simulated using models of superimposed inflation
- Measure prediction error of different quarterly valuation strategies
  - Basic roll-forward
  - Full roll-forward
  - Moving Average
  - AvE Threshold
  - Adaptive filtering
- Measuring prediction error over course of year ⇒ indication of value of remodelling at different time intervals

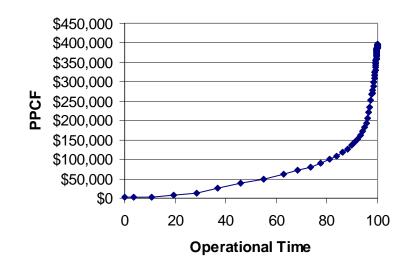



- Modelling Claims PPCI
  - Assumed to be Log-Normally Distributed
  - PPCI modelled with Hoerl Curve

$$\log PPCI_{ij} = \beta_0 + \beta_1 \log(j+1) + \beta_2 j + \gamma(i, p) + \varepsilon(j), \qquad j = 0, 1, \dots$$

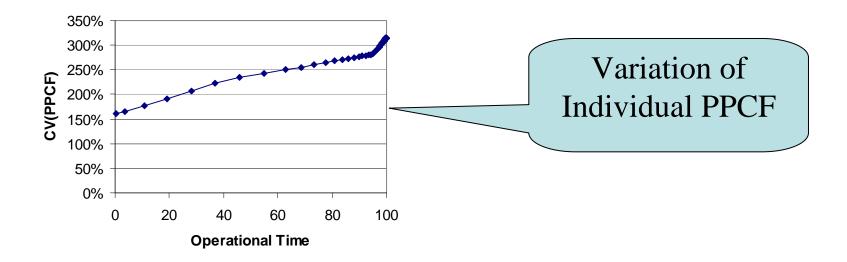





- Modelling Claims PPCI
  - Variance of PPCI modelled as:
    - function of j (development quarter)
    - And portfolio size
  - LARGE PORTFOLIO PPCI ~ 1000 claims p.a
  - SMALL PORTFOLIO PPCI ~ 250 claims p.a






- Modelling Claims PPCF
  - Assumed to be Log-Normally Distributed
  - PPCF modelled as:

 $\log PPCF_{it} = \beta_0 + \beta_1 t + \beta_2 \max(t - 40, 0) + \beta_3 \max(t - 95, 0) + \gamma(i, p) + \varepsilon(t)$ 





- Modelling Claims PPCF
  - Variance of PPCF modelled as:
    - function of *t* (operational time)
    - And portfolio size
  - LARGE PORTFOLIO PPCF ~ 2 million vehicles
  - SMALL PORTFOLIO PPCF ~ 0.5 million vehicles





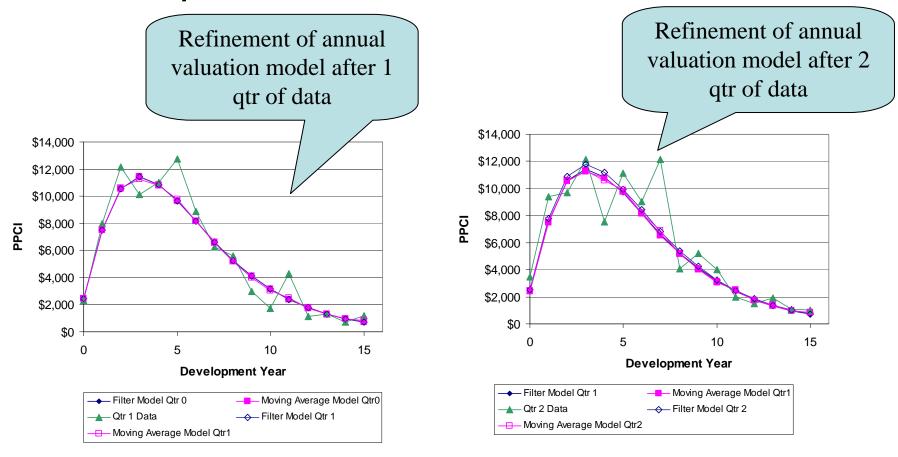
- Superimposed inflation models
  - $\gamma(i, p)$ , for superimposed inflation in accident quarter *i* and experience quarter p(=i+j)
  - Modelled as random walk

$$\gamma_{k+1} = \gamma_k + \mu + \sigma Z$$

- where k = i or p:

 $k = i \Rightarrow$  Accident Quarter SI  $k = p \Rightarrow$  Payment Quarter SI




- Superimposed inflation models
  - **3** SCENARIOS  $\leftarrow$  3 sets of parameters
  - STABLE
    - $\mu = 0, \, \sigma = 0.016$
    - 2/3 chance that SI will not change by more than 3% in a year
  - VARIABLE
    - $\mu = 0, \, \sigma = 0.032$
    - 2/3 chance that SI will not change by more than 6% in a year
  - TREND
    - $\mu = 0.0125, \sigma = 0.032$
    - 5% p.a. trend has been added to the variable environment.



- Simulation of datasets
  - Combine claim models with SI models  $\Rightarrow$  simulate large number of datasets
  - Apply different quarterly valuation strategies to simulated datasets to see how well they pick up the systematic changes amongst the noise
    - Basic roll-forward
    - Full roll-forward
    - Moving Average
    - AvE Threshold
    - Adaptive filtering



#### Example – PPCI model with trend SI

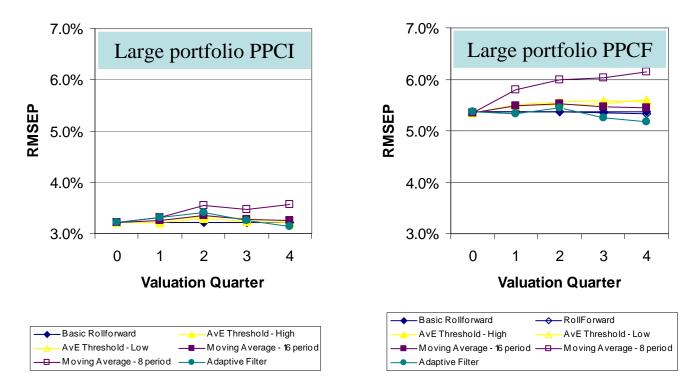




- Prediction Error
  - Used to evaluate performance of each valuation method
  - Prediction Error = True Liability Estimated Liability
  - Is measured at each quarter over the course of the year
  - To keep things consistent always measured in relation to payments after the end of the year
  - Measure on many datasets -> Distribution of Prediction Error

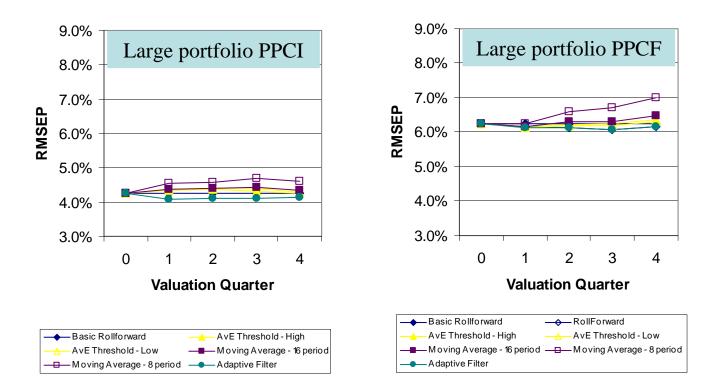


- Annual valuation update error
  - Update error size of movement in liabilities between a 3<sup>rd</sup> quarter valuation and the 4<sup>th</sup> quarter "full" valuation
  - Measures likely impact if quarterly method doesn't pick up systemic changes as well as the annual valuation method



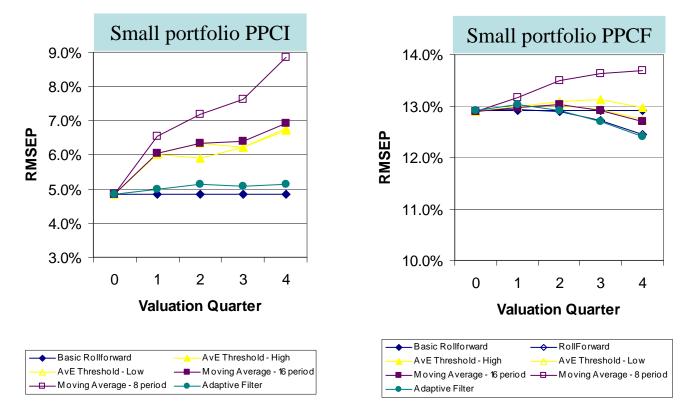

### **Overview**

- Overview of Approach
- Some specific details of approach
- Results
  - 1. Effect of claims environment and portfolio size on prediction error of different quarterly valuation methods
  - 2. Annual valuation update errors
  - 3. Errors from preparing annual valuation 1 quarter prior to balance date



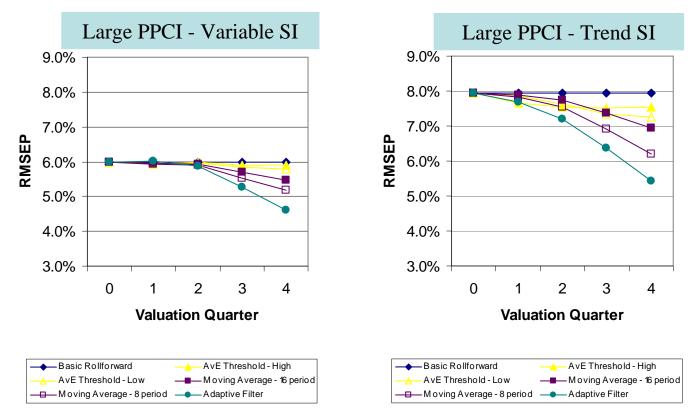

- In a **relatively stable SI environment** remodelling did not improve prediction error
  - Payment Quarter SI





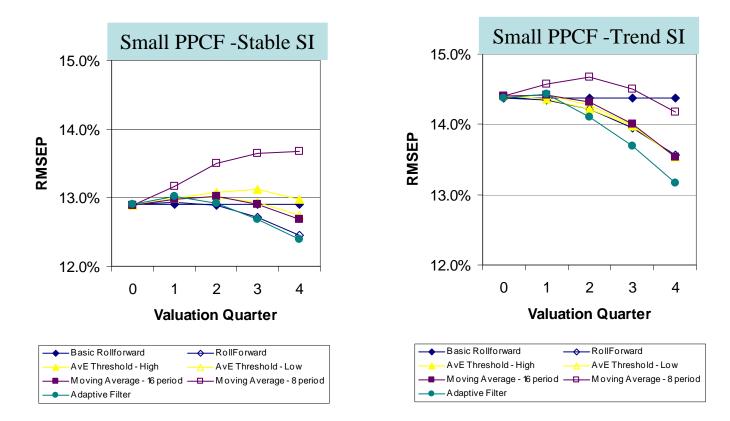

- In a **relatively stable SI environment** remodelling did not improve prediction error
  - Accident Quarter SI






• If portfolio small, or valuation method particularly sensitive to claims volatility, then remodelling ⇒ worse prediction error






In less stable SI environments, remodelling ⇒ decrease prediction error





• Full roll-forward gave superior results to basic roll-forward particularly when the portfolio was small





### **Overview**

- Overview of Approach
- Some specific details of approach
- Results
  - 1. Effect of claims environment and portfolio size on prediction error of different quarterly valuation methods
  - 2. Annual valuation update errors
  - 3. Errors from preparing annual valuation 1 quarter prior to balance date



# **Annual valuation update errors**

In a relatively stable SI environment:

an appropriate rollforward procedure did not give appreciably worse update errors

Large Portfolio PPCI – distribution of update

error

| Valuation Method           | Mean               |               |          |       |
|----------------------------|--------------------|---------------|----------|-------|
|                            | Stable - rw        | Stable - jump | Variable | Trend |
|                            |                    |               |          |       |
| Basic Rollforward          | 0%                 | 0%            | 0%       | 3%    |
| AvE Threshold - High       | 0%                 | 0%            | 0%       | 2%    |
| AvE Threshold - Low        | 0%                 | 0%            | 0%       | 2%    |
| Moving Average - 16 period | 0%                 | 0%            | 0%       | 2%    |
| Moving Average - 8 period  | 0%                 | 0%            | 0%       | 1%    |
| Adaptive Filter            | 0%                 | 0%            | 0%       | 1%    |
|                            | Standard Deviation |               |          |       |
|                            | Stable - rw        | Stable - jump | Variable | Trend |
| Basic Rollforward          | 1%                 | 3%            | 3%       | 3%    |
| AvE Threshold - High       | 1%                 | 2%            | 3%       | 3%    |
| AvE Threshold - Low        | 1%                 | 2%            | 3%       | 3%    |
| Moving Average - 16 period | 1%                 | 2%            | 2%       | 2%    |
| Moving Average - 8 period  | 1%                 | 2%            | 2%       | 2%    |
| Adaptive Filter            | 1%                 | 2%            | 2%       | 2%    |
|                            | P75                |               |          |       |
|                            | Stable - rw        | Stable - jump | Variable | Trend |
| Basic Rollforward          | 1%                 | 2%            | 3%       | 5%    |
| AvE Threshold - High       | 1%                 | 1%            | 2%       | 4%    |
| AvE Threshold - Low        | 1%                 | 1%            | 2%       | 4%    |
| Moving Average - 16 period | 1%                 | 1%            | 2%       | 4%    |
| Moving Average - 8 period  | 1%                 | 1%            | 2%       | 3%    |
| Adaptive Filter            | 1%                 | 1%            | 1%       | 2%    |
|                            | P90                |               |          |       |
|                            | Stable - rw        | Stable - jump | Variable | Trend |
| Basic Rollforward          | 2%                 | 3%            | 5%       | 8%    |
| AvE Threshold - High       | 1%                 | 2%            | 4%       | 6%    |
| AvE Threshold - Low        | 1%                 | 2%            | 4%       | 6%    |
| Moving Average - 16 period | 1%                 | 2%            | 4%       | 5%    |
| Moving Average - 8 period  | 2%                 | 2%            | 3%       | 4%    |
| Adaptive Filter            | 1%                 | 2%            | 2%       | 3%    |

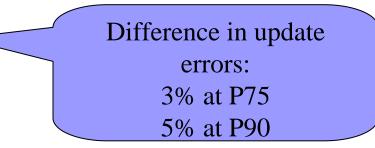


# **Annual valuation update errors**

 Inappropriate quarterly remodelling ⇒
worse update errors compared to not remodelling at all

Small Portfolio PPCI – distribution of update error

| Valuation Method           | Mean               |               |          |       |
|----------------------------|--------------------|---------------|----------|-------|
|                            | Stable - rw        | Stable - jump | Variable | Trend |
|                            |                    |               |          |       |
| Basic Rollforward          | 0%                 | 0%            | 0%       | 2%    |
| AvE Threshold - High       | -1%                | -1%           | -1%      | 0%    |
| AvE Threshold - Low        | 0%                 | 0%            | 0%       | 1%    |
| Moving Average - 16 period | 0%                 | 0%            | 1%       | 1%    |
| Moving Average - 8 period  | 0%                 | 0%            | 0%       | 1%    |
| Adaptive Filter            | 0%                 | 0%            | 0%       | 0%    |
|                            | Standard Deviation |               |          |       |
|                            | Stable - rw        | Stable - jump | Variable | Trend |
| Basic Rollforward          | 1%                 | 3%            | 3%       | 3%    |
| AvE Threshold - High       | 3%                 | 3%            | 4%       | 4%    |
| AvE Threshold - Low        | 3%                 | 4%            | 4%       | 4%    |
| Moving Average - 16 period | 3%                 | 4%            | 4%       | 4%    |
| Moving Average - 8 period  | 5%                 | 5%            | 5%       | 5%    |
| Adaptive Filter            | 1%                 | 2%            | 1%       | 1%    |
|                            | P75                |               |          |       |
|                            | Stable - rw        | Stable - jump | Variable | Trend |
| Basic Rollforward          | 1%                 | 2%            | 2%       | 4%    |
| AvE Threshold - High       | 1%                 | 2%            | 2%       | 3%    |
| AvE Threshold - Low        | 2%                 | 3%            | 3%       | 4%    |
| Moving Average - 16 period | 3%                 | 3%            | 3%       | 4%    |
| Moving Average - 8 period  | 4%                 | 4%            | 4%       | 4%    |
| Adaptive Filter            | 0%                 | 1%            | 1%       | 2%    |
|                            | P90                |               |          |       |
|                            | Stable - rw        | Stable - jump | Variable | Trend |
| Basic Rollforward          | 2%                 | 4%            | 4%       | 5%    |
| AvE Threshold - High       | 3%                 | 4%            | 4%       | 5%    |
| AvE Threshold - Low        | 4%                 | 4%            | 5%       | 5%    |
| Moving Average - 16 period | 4%                 | 4%            | 5%       | 6%    |
| Moving Average - 8 period  | 6%                 | 6%            | 7%       | 7%    |
| Adaptive Filter            | 1%                 | 2%            | 2%       | 2%    |




### **Annual valuation update errors**

| Valuation Method           | Mean        |               |          |          |
|----------------------------|-------------|---------------|----------|----------|
|                            | Stable - rw | Stable - jump | Variable | Trend    |
|                            |             |               |          |          |
| Basic Rollforward          | 0%          | 0%            | 0%       | 3%       |
| AvE Threshold - High       | 0%          | 0%            | 0%       | 2%       |
| AvE Threshold - Low        | 0%          | 0%            | 0%       | 2%       |
| Moving Average - 16 period | 0%          | 0%            | 0%       | 2%       |
| Moving Average - 8 period  | 0%          | 0%            | 0%       | 1%       |
| Adaptive Filter            | 0%          | 0%            | 0%       | 1%       |
|                            |             | Standard E    |          |          |
|                            | Stable - rw | Stable - jump | Variable | Trend    |
| Basic Rollforward          | 1%          | 3%            | 3%       | 3%       |
| AvE Threshold - High       | 1%          | 2%            | 3%       | 3%       |
| AvE Threshold - Low        | 1%          | 2%            | 3%       | 3%       |
| Moving Average - 16 period | 1%          | 2%            | 2%       | 2%       |
| Moving Average - 8 period  | 1%          | 2%            | 2%       | 2%       |
| Adaptive Filter            | 1%          | 2%            | 2%       | 2%       |
|                            |             | P7:           | 5        | $\frown$ |
|                            | Stable - rw | Stable - jump | Variable | Trend    |
| Basic Rollforward          | 1%          | 2%            | 3%       | 5%       |
| AvE Threshold - High       | 1%          | 1%            | 2%       | 4%       |
| AvE Threshold - Low        | 1%          | 1%            | 2%       | 4%       |
| Moving Average - 16 period | 1%          | 1%            | 2%       | 4%       |
| Moving Average - 8 period  | 1%          | 1%            | 2%       | 3%       |
| Adaptive Filter            | 1%          | 1%            | 1%       | 2%       |
|                            | P90         |               |          |          |
|                            | Stable - rw | Stable - jump | Variable | Trend    |
| Basic Rollforward          | 2%          | 3%            | 5%       | 8%       |
| AvE Threshold - High       | 1%          | 2%            | 4%       | 6%       |
| AvE Threshold - Low        | 1%          | 2%            | 4%       | 6%       |
| Moving Average - 16 period | 1%          | 2%            | 4%       | 5%       |
| Moving Average - 8 period  | 2%          | 2%            | 3%       | 4%       |
| Adaptive Filter            | 1%          | 2%            | 2%       | 3%       |

Unstable SI environment: a roll-forward strategy gave larger update errors

> Large Portfolio PPCI – distribution of update error





### **Overview**

- Overview of Approach
- Some specific details of approach
- Results
  - 1. Effect of claims environment and portfolio size on prediction error of different quarterly valuation methods
  - 2. Annual valuation update errors
  - 3. Errors from preparing annual valuation 1 quarter prior to balance date



### Early preparation of annual valuation

- Remodelling with only one extra quarter of data at best leads to a marginal improvement in prediction error
  - At most 1-2% at 75<sup>th</sup> percentile

Small Portfolio PPCI – distribution of prediction error 1 quarter after full valuation

| Valuation Method           | Mean               |               |          |       |
|----------------------------|--------------------|---------------|----------|-------|
|                            | Stable - rw        | Stable - jump | Variable | Trend |
| Basic Rollforward          | 0%                 | 0%            | 0%       | 5%    |
| AvE Threshold - High       | 0%                 | 0%            | 0%       | 5%    |
| AvE Threshold - Low        | 0%                 | 0%            | 0%       | 6%    |
| Moving Average - 16 period | 0%                 | 0%            | 1%       | 6%    |
| Moving Average - 8 period  | 0%                 | 0%            | 1%       | 6%    |
| Adaptive Filter            | 0%                 | 0%            | 0%       | 5%    |
|                            | Standard Deviation |               |          |       |
|                            | Stable - rw        | Stable - jump | Variable | Trend |
| Basic Rollforward          | 5%                 | 6%            | 6%       | 6%    |
| AvE Threshold - High       | 6%                 | 6%            | 7%       | 7%    |
| AvE Threshold - Low        | 6%                 | 6%            | 7%       | 7%    |
| Moving Average - 16 period | 6%                 | 6%            | 7%       | 7%    |
| Moving Average - 8 period  | 6%                 | 7%            | 7%       | 7%    |
| Adaptive Filter            | 5%                 | 6%            | 7%       | 7%    |
|                            | P75                |               |          |       |
|                            | Stable - rw        | Stable - jump | Variable | Trend |
| Basic Rollforward          | 4%                 | 3%            | 4%       | 10%   |
| AvE Threshold - High       | 4%                 | 4%            | 6%       | 11%   |
| AvE Threshold - Low        | 4%                 | 5%            | 6%       | 12%   |
| Moving Average - 16 period | 5%                 | 5%            | 6%       | 12%   |
| Moving Average - 8 period  | 5%                 | 5%            | 6%       | 12%   |
| Adaptive Filter            | 4%                 | 4%            | 6%       | 11%   |
|                            | P90                |               |          |       |
|                            | Stable - rw        | Stable - jump | Variable | Trend |
| Basic Rollforward          | 7%                 | 9%            | 9%       | 15%   |
| AvE Threshold - High       | 8%                 | 9%            | 10%      | 16%   |
| AvE Threshold - Low        | 8%                 | 9%            | 10%      | 179   |
| Moving Average - 16 period | 8%                 | 9%            | 11%      | 179   |
| Moving Average - 8 period  | 9%                 | 10%           | 12%      | 18%   |
| Adaptive Filter            | 7%                 | 9%            | 10%      | 16%   |



## **Conclusions**

- In many circumstances, remodelling at quarterly intervals will not improve prediction error
  - Larger portfolio and systemic changes  $\Rightarrow$  more value from frequent valuation
  - Framework and approach used in this paper can be used to assess the reasonableness of a particular quarterly valuation approach
- For the models and SI scenarios tested in this paper:
  - The difference in update errors between a roll-forward strategy and a full remodelling strategy were at most 5% at the 90<sup>th</sup> percentile
    - Magnitude of errors needs to be considered in light of
      - other uncertainties (e.g. how future SI will continue to evolve)
      - objectives of stakeholders
  - prediction error is not significantly increased by performing the valuation one quarter early