
 
 

 

 
 
 

The Mack-Method and Analysis of 
Variability 

 
 

Prepared by Erasmus Gerigk 
 
 
 
 
 
 
 

Presented to the Institute of Actuaries of Australia 
Accident Compensation Seminar 28 November to 1 December 2004. 

 
 
 
 
 
 
 
 

This paper has been prepared for the Institute of Actuaries of Australia’s (IAAust) Accident Compensation Seminar, 
2004.  The IAAust Council wishes it to be understood that opinions put forward herein are not necessarily those of 

the IAAust and the Council is not responsible for those opinions. 
 
 
 
 
 

© 2004 Institute of Actuaries of Australia 
 
 
 

The Institute of Actuaries of Australia 
Level 7 Challis House 4 Martin Place 

Sydney NSW Australia 2000 
Telephone: +61 2 9233 3466 Facsimile: +61 2 9233 3446 

Email: insact@actuaries.asn.au  Website: www.actuaries.asn.au

 1

mailto:insact@actuaries.ans.au
http://www.actuaries.asn.au/


 
INTRODUCTION .............................................................................................3 

SECTION 1: PRELIMINARIES........................................................................5 

1.1 REVIEW OF THE THEORY OF POINT ESTIMATION............................................5 
1.2 PROCESS ERROR AND ESTIMATION ERROR.................................................5 
1.3 TRIANGULATED DATA AND NOTATION...........................................................6 

SECTION 2: THE INCREMENTAL LOSS RATIO METHOD ..........................8 

2.1 FORMULATION OF THE MODEL ....................................................................8 
2.2 THE ESTIMATORS OF THE MODEL PARAMETERS............................................9 
2.3 ANALYSIS OF VARIABILITY ........................................................................11 

SECTION 3: THE CHAIN-LADDER METHOD..............................................14 

3.1 FORMULATION OF THE MODEL ..................................................................14 
3.2 THE ESTIMATORS OF THE MODEL PARAMETERS..........................................16 
3.3 ANALYSIS OF VARIABILITY ........................................................................18 

SECTION 4: CALCULATION OF A RISK MARGIN .....................................21 

SECTION 5: TESTING THE MODEL ASSUMPTIONS.................................23 

5.1 TESTING THE ADDITIVE MODEL ................................................................23 
5.2 TESTING THE MULTIPLICATIVE MODEL ......................................................24 
5.3 CHECKING FOR CALENDAR-YEAR EFFECTS ................................................25 

SECTION 6: PRACTICAL CONSIDERATIONS............................................27 

6.1 DEALING WITH OUTLIERS..........................................................................27 
6.2 DECIDING BETWEEN THE MULTIPLICATIVE AND ADDITIVE MODEL...................28 
6.3 REDUCTION OF PARAMETERS ...................................................................31 

APPENDIX A: FORMULAS FOR THE INCREMENTAL LOSS RATIO 
METHOD .......................................................................................................33 

APPENDIX B: FORMULAS FOR THE CHAIN-LADDER METHOD.............34 

BIBLIOGRAPHY ...........................................................................................35 

 

 2



Introduction 
 
 
The Background 
This paper aims to contribute to the current discussion of estimating central 
estimates and risk margins under APRA’s GPS 210.  Two statistical reserving 
methods are presented in detail, namely the “Incremental Loss Ratio Method” 
and the “Chain-Ladder Method”. 
 
Both methods are in fact as old as loss-reserving itself, and the underlying 
formulas constitute a widely accepted heuristic method of computing IBNR 
estimates - yet these methods are sometimes not further justified in terms of 
mathematical statistics. 
 
It was Thomas Mack’s achievement in the nineties to interpret both methods 
within a rigorous statistical framework and to extend these methods to include 
variability estimates (see Mack [1993, 1994, 1997]).  It has now become 
common practice to refer to this interpretation and extension of the Chain-
Ladder-Method as the “Mack-Method” and this article extends this notion to 
the Incremental Loss Ratio Method, which is not as well-known in Australia, 
mainly because the only publication so far is written in German (Mack [1997, 
2002]). 
 
The key features of both methods in the context of risk margins may be 
summarised as follows: 
 

• The variability estimates depend only on the insurers own data 
• The underlying assumptions can be tested 
• The methods are simpler than most other methods, e.g. 

“Bootstrapping” or sophisticated stochastic modelling 
 
The biggest caveat is probably that in many cases the data provides a bad fit 
to the proposed models and therefore the results need to be carefully 
reviewed. 
 
This paper 
This paper intends to give a statistically sound overview of the Incremental 
Loss Ratio Method and the Chain-Ladder Method without any formal proofs. 
 
The text does not reveal anything genuinely new to the expert and it is not its 
purpose to add anything to current research, although the Incremental Loss 
Ratio Method with variability estimates might be unknown to many actuaries. 
This was the original motivation for presenting this paper in Australia.  The 
method is fairly simple from a statistical point of view at least compared to the 
Chain-Ladder method. 
 
The whole Chain-Ladder theory has already been developed in Mack [1993] 
and has been further explored since then at a sophisticated level in many 
articles.  This article gives an introduction to the practitioner into the more 
difficult Chain-Ladder theory. 
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The example spreadsheets 
Instead of adding lengthy numerical examples to the text, this text is 
accompanied by two spreadsheets, one for either method, which demonstrate 
how the methods may be implemented. They reader may find all formulas 
from sections 2-4 there, only the sections on model testing and regression 
have been left out.  The spreadsheets shall serve two purposes: first, to 
provide a better understanding of the underlying methods.  Second, they 
serve to support the claim that the methods are indeed simple.  They were 
designed for study-purposes only and should not be used if anything depends 
on the correct result of the calculations. 
 
The structure of this article 
Sections 1-3 develop the basic theory.  The focus lies on motivating the 
crucial concepts, such as the role of model assumptions and not so much in 
providing complete technical proofs without becoming too vague or imprecise.   
 
Section 4 briefly discusses a popular method of translating variability 
estimates into risk margins. 
 
Section 5 sketches how the model assumptions for both methods can be 
tested. 
 
Section 6 addresses some additional issues that arise in practice. 
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SECTION 1: PRELIMINARIES 

1.1 Review of the theory of point estimation 
 
Although we may assume that the reader is familiar with the basic concepts of 
statistical inference, it is helpful to recall some concepts and precise 
terminology from the theory of point estimation. 
 
The problem of point estimation can loosely be described as follows:  assume 
that the characteristics of the elements of a population can be represented by 
some random vector X with a certain unknown density fx.  Further assume that 
the values (x1,…,xn) of  the random sample X1, … , Xn can be observed.  On the 
basis of the observed (x1,…,xn) it is desired to estimate some function, say 
t=t(fx), of the underlying distribution.  In our case, the primary focus consists of 
estimating the mean and the variance of the loss distributions for a particular 
underwriting year or a total portfolio.  
  
In general, point estimation admits two problems:  the first, to devise some 
means of obtaining estimators T(x1,…xn) for t.  The second is to select criteria 
to define and find a “best” estimator among many possible estimators.  The 
criterion selected for our purposes will be the mean-squared error (mse).  It 
is a popular and useful criterion, though it is perhaps crude.  In many cases in 
applied statistics, the mse can be calculated by making suitable distribution 
assumptions about the underlying “true” X.  It is an intriguing result of the 
Mack-Method that we will be in a position to estimate the mse of our 
estimators without the need to specify any distributions. 
 
Instead of specifying or parameterising any distributions, our proposed 
assumptions will only model how the distributions are affected by changes in 
exposure or volume. This in connection with some independence 
assumptions will suffice to arrive at estimators and optimality conclusions. 
 
Note that in order to apply the theory of point estimation properly, it is 
necessary to state explicitly some model assumptions about the nature of 
the random vector X.  It is probably this point that is sometimes lost sight of 
when developing actuarial techniques in practice.  One of the advantages of 
making precise model assumptions is the fact that only then we can actually 
test and possibly reject them, rather than intuitively decide on which model to 
apply. 
 

1.2 Process Error and Estimation Error 
 
Throughout this article, we have to carefully distinguish between several kinds 
of variability:  Given some observed data set  suppose we have some 
estimator  of the outcome of a “true” but unknown random variable 

, (in the sequel C  can be a loss-distribution and  is the data-triangle that 
has been observed so far).  In a sense that can be made mathematically 

D
)(ˆˆ DCC =

C D
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precise, the best predictor of , given the data , is the conditional 
expectation .  We do not know  and thus have to estimate it.  
This gives rise to two sources of variability.  First, our estimate  could be far 
away from the true .  Second, even if we were lucky enough to 
exactly determine , the prediction of the individual outcome  would 
still be subject to the uncertainty .  In order to make this important 
observation more precise, let us introduce some terminology that will be 
useful in the subsections to follow: 

C D
)|( DCE )|( DCE

Ĉ
)|( DCE

)|( DCE C
)|( DCVar

 
The Estimation Error measures the variability of the C  around the “true 
mean value” of the distribution we are trying to estimate.  It is defined by  

.  This component is subject to our choice of estimators. 

ˆ

2)]|(ˆ[ DCECE −
  
The Process Error measures the variability of the random variable . It is 
defined by .  As should be intuitively clear, 
there is nothing we can do to reduce the Process Error, which is inherent to 
the process we are trying to forecast.    

C
}|])|({[)|( 2 DCDCEEDCVar −=

 
The Prediction Error measures the variability of the deviations .  It is 
defined by 

CC ˆ−
( )DCCEDCmse |)ˆ()|ˆ( 2−= .  

 
Looking at the identity  we see that the 
Prediction Error is made up of two components.  Indeed, after some 
calculations it can be shown that 

CDCEDCECCC ˆ)|()|(ˆ −+−=−

 
  2]ˆ)|([)|()|ˆ( CDCEDCVarDCmse −+=

 
Thus the important result 
 

Prediction Error = Process Error + Estimation Error 
 
also holds when working with conditional variances. 
 
The reader may recall the above discussion from the theory of simple linear 
regression.  When forecasting an individual response, the error of the 
projection can be split into the Estimation and Process Error.  It is an 
interesting feature of the Mack-Method that it also permits an explicit split of 
the Prediction Error into its two components.  This can give the actuary some 
insight where the resulting variability of his estimates actually stems from. 
 

1.3 Triangulated data and notation 
 
We may assume that the reader is familiar with the basics of run-off triangles.  
Most of the notation used in the sequel should be intuitively clear.  Yet to 
avoid ambiguity, we give an overview of notations in order to give a formal 
representation of triangulated data. 
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Overview of basic notation: 
 
 i  accident-year or underwriting year period 
 k  development year 

iv   the exposure measure for underwriting year i 

kiS ,   incremental payments made in underwriting year i and development 
year k 

kiC ,   cumulative payments made in underwriting year i and development 
year k 

kim ,   incremental loss ratio in underwriting year i and development year k 
 
In most cases the exposure measure  will represent the ultimate premium 
or vehicle count of that particular underwriting year, though these are not the 
only possible exposure measures. 

iv

 
An important remark: 
For the sake of simplicity we will only refer to triangulated data of 
payments throughout this article and we will refer to the rows of a run-off 
triangle as underwriting years.  This does hopefully not obscure the fact that 
all methods introduced in the sequel can, in principle, be applied to a much 
wider range of data, e.g. incurred claims, claims counts and possibly other 
data and that the rows may as well represent accident years.
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SECTION 2: THE INCREMENTAL LOSS RATIO METHOD 
 
In this section we formulate the model assumptions for the Incremental Loss 
Ratio method and discuss the implied estimators without proofs.  The key 
results are the estimators for the model parameters and the recursion 
formulae for the standard error of the reserves.  Sections 2.1 to 2.3 rely 
heavily on Mack [2002]. 

2.1 Formulation of the model 
 
Almost all reserving make the assumption that the underwriting years of the 
run-off triangle are similar to each other.  The most simplistic assumption is 
probably to presume that the claims payments in each underwriting follow 
exactly the same distribution.  Certainly this condition will almost never be 
fulfilled as the volume of business written in each year will be different and 
thus the underlying loss distributions in each underwriting year cannot be 
identical. 
 
Still, an obvious step from here would be to assume that each underwriting 
year differs only with respect to its volume.  The influence of the volume on 
the underlying distributions could be modelled in accordance with a concept 
that is sometimes called the individual model.  To be more precise:  assume 
that for each development year k there is some increment ratio  such that 
the following relation holds for the expected (incremental) claims payments in 
each underwriting year i:  

km

 

(AM 1)  k
i

ik m
v
SE =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 

 
We add another somewhat strong, but still intuitive and statistically testable 
assumption: 
 
(AM 2) The individual payments Sik in each underwriting/development year are 
independent for all i,k. 
 
The individual model also implies how the variance of each  is affected by 
the exposure-measure.  Assume that for each development year k there is 
some  such that 

kiS ,

2
ks

 

(AM 3)  
i

k

i

ik

v
s

v
S

Var
2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 
The condition (AM 3) is intuitively quite appealing if we think of the exposure 
measure as some form of vehicle- or policy-count.  It is just a precise 
formulation of the well-known fact from statistics that “smaller samples have 
higher variances”. 
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Once we accept that our portfolio behaves according to the individual model, 
the assumptions (AM 1), (AM 2) and (AM 3) may not seem to be too bold.   
 
Let us rephrase what (AM 1 ) - (AM 3) say.  We assume: 
 
(AM 1) For a particular development year the expected loss ratio increment is 
the same for all underwriting years  
(AM 2) The payment in each cell is independent of all other payments 
(AM 3) The variance of the loss ratio decreases in proportion to the size of 
volume 
 
It may occur to the reader that (AM 2) is probably the most likely assumption 
to be violated in reality.  
 
Now any estimator of  leads immediately to an estimate of the future 

payments.  The outstanding payments are naturally projected via , 
and the estimator of the reserve of the year i is given by .  It is 
clear that these estimators are also unbiased. 

km

kiik mvR ˆˆ ⋅=

∑= k iki RR ˆˆ

 
By estimating  we will better understand the variability underlying the above 
projections. 

2
ks

 

2.2 The estimators of the model parameters 
 
Combining the assumptions (AM 1) - (AM 3) one can deduce the following 
result: 
 
 

The estimators 
 

(2.1)  
∑

∑
−+

=

−+

== kn

i
i

kn

i
ik

k

v

S
m 1

1

1

1ˆ  

 

(2.2)  
21

1

2 ˆ1ˆ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
= ∑

−+

=
k

i

ik
i

kn

i
k m

v
S

v
kn

s  

 
are unbiased estimators of and . km 2

ks
 
 
The sum in (2.1) is in fact an exposure-weighted mean of the individual 

increment ratios 
i

ik
ik v

S
m = , as can be seen from rearranging (2.1) to 
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(2.3)  ∑
∑

−+

=
−+

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

kn

i
ikkn

i i

i
k m

v

v
m

1

1
1

1

ˆ  

 
Note that since each  is unbiased one can easily write down plenty of 
unbiased estimators for , e.g. the arithmetic mean of the individual 
increment ratios , but 

ikm

km

ikm
 

The weighted mean as given in (2.1) has the smallest variance 
among all linear unbiased estimators of mk. 

 
We will not prove this result, although the proofs are not particularly difficult.  It 
is the direct consequence of a general principle in statistics, namely that when 
weighting independent estimators of a random variable, the respective 
weights should be inversely proportional to the corresponding variances.  
 
For illustration purposes, assume that the “true” increment ratio for a particular 
portfolio in the 2nd development year was 53%.  Then the resulting triangle 
could look roughly like this: 
 

Illustration: Incremental Loss Ratio in the 2nd dev. year

Exposure 1 2 3 4 5 6

1999 7,000  50%
2000 5,000  47%
2001 6,000  54%
2002 6,400  55%
2003 8,000  55%
2004 9,000  

2,2000m

i

ik
ik v

S
m =

2,2003m2003v

2000v

 
 
 
Note two things:  

1) We should expect the observed loss ratio increment in UY 2000 to 
deviate more than the increment in UY 2003 from the true underlying 
increment of 53%, because of the different exposures. 

2) When estimating the loss ratio increment for development year 2, we 
may put more credibility to the UY 2003 observation than into the UY 
2000 observation. 

 
Readers who are already familiar with the Incremental Loss Ratio Method will 
immediately recognise that  is nothing but the original well-known 
estimator. 

km̂
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Note that there can be no estimator for the last , because there is only one 
data point in the upper right corner of the triangle and thus no estimator for 
the variability of the individual incremental loss ratios.  If we assume that the 
data are run-off in the n-th development year, we can set  to 0, otherwise 
we may try to interpolate from the preceding , or just take their minimum as 
an estimator for .  This will usually lie on the safe side as one should expect 
the  to decline with k. 

2
ks

2ˆns
2ˆks

2
ks

2
ks

 
Up to here we have just reformulated what we may call the Incremental Loss 
Ratio Method.  Let us summarise:  once we feel confident that our model 
assumptions apply to our triangulated data, we are almost forced into 
projecting data in accordance with the Incremental Loss Ratio Method.  In 
fact, we would need good reasons to diverge from that approach.  This is 
already something worth knowing.   We may now further investigate the 
variability of the projected claims payments, which is done in the next 
subsection. 
 

2.3 Analysis of variability 
 
The standard error of the Incremental Loss Ratio 
 
Combining (2.3) with (AM 3) immediately tells us that the variance of the 
estimator  is given by km̂
 

(2.4)  ( )
∑ −+

=

= kn

i i

k
k

v
smVar 1

1

2

ˆ  

 
and this expression gives us an estimator for the s.e. of the incremental Loss 
Ratios – note that because of  
 

(2.5)  
2

1

1

1

1
1

1

2

ˆ1ˆ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

∑
∑

∑ −+

=

−+

=
−+

=

k
i

ik
kn

i i

i
kn

i
kn

i i

k m
v
S

v

v
knv

s  

 
the expression in (2.5) offers an intuitive interpretation as a “weighted 
variance” of the deviations of the individual increment ratios around their 
weighted mean.  At this stage, it is often helpful look at the triangle of the 
individual incremental loss ratios in order to better understand where the 
measured variability comes from. 

kim ,

 
The standard error for a single underwriting year 
 
We now show how the standard error of the projected reserves can be 
calculated.  We keep the split between random and Estimation Error.   
For the practitioner, the total recursions (2.8) and (2.9) are probably the most 
important.   
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The formulas presented below can be derived by direct algebraic 
manipulations and do not require any higher theorems from statistics.  Yet 
some calculations are quite lengthy, which is why we omit them. 
 
The Process Error for a single underwriting year is given by: 
 
(2.6)  )ˆ(ˆ)ˆ( ,

2
11, kikiki CVarsvCVar +⋅= ++

 
This equation can be made intuitively clear without a formal proof:  
assumption (AM 3) stated that each individual payment  has variance 

.  Thus the variance of each cumulative  is estimated 
by (2.6) since the variances just add up using the independence assumption 
(AM 2). 

kiS ,

2
ki sv ⋅ kikiki CSC ,1,1,

ˆˆˆ += ++

 
The Estimation Error for a single underwriting year can be estimated 
recursively via: 
 
(2.7) ( ) ( ) ( )2,,

2
1

22

1,1, )(ˆˆ..)(ˆ
kikikikiki CECmesvCEC −+⋅=− +++  

 
We may confirm this equation intuitively with a bit more effort as follows:  The 
term  measures the variation of the average estimated incremental 
Loss Ratio  from the “true” incremental Loss Ratio , i.e. the Estimation 
Error.  Thus (2.7) says that the Estimation Error we are making is the 
Estimation Error of the estimate  plus the Estimation Error we have made 
so far.  More formally, we may rewrite the Estimation Error as 

 and then square out the 
sum and take expectations on both sides.   This leads then to (2.7). 

( kmes ˆ.. )

)

km̂ km

kiS ,
ˆ

( ) ( 2

,,,,

2

1,1, )](ˆ[)](ˆ[)(ˆ
kikikikikiki CECSESCEC −+−=− ++

 
Putting (2.6) and (2.7) together we get immediately the following 
 
 

Recursion for the standard error of a single underwriting-year: 
 

(2.8) ( ) ( ) ( )2,
2

1
22

1

2

1,
ˆ..ˆ..ˆˆ.. kikikiki CesmesvsvCes +⋅+⋅= +++  

 
 
 
The total standard error 
 
The manipulations in the previous apply also for the total standard error – it is 
basically the same reasoning only with a different volume measure.  With the 
intermediate term , which can be thought of as the total ∑ +−=

=
n

kni ik vu
2
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exposure corresponding to development period k+1, the following recursion 
formula for the total standard error of ∑=

=
n

i kik CC
1 ,

ˆ holds: 
 
 

Recursion for the total standard error: 
 

(2.9) ( ) ( ) ( )22
1

22
1

2

1
ˆ..ˆ..ˆˆ.. kkkkkk CesmesusuCes +⋅+⋅= +++  

 
with the start value ( ) ( )22,

2

2
ˆ..ˆ.. nCesCes = .  In the same way we may calculate 

the Process Error and Estimation Error, just by replacing the volumes  by 
 in formulas (2.6) and (2.7). 

iv

ku
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SECTION 3: THE CHAIN-LADDER METHOD 
 
In this section we formulate the model assumptions for the Chain-Ladder and 
discuss the implied estimators.  The key results are the estimators for the 
model parameters and the recursion formulae for the standard error of the 
reserves.   This section is basically a very short summary of Mack [1993] and 
Mack [1997]. 

3.1 Formulation of the model 
 
We will now turn to what is usually called the Chain-Ladder method.  In 
principle, we proceed in a similar fashion as in the previous section, starting 
with some (hopefully plausible) model-assumptions and ending up with a set 
of estimators.  But since the model assumptions may not be as easily 
motivated as in the additive case, we start by taking the CL-method as given 
and look into the implicit assumptions that we may have made when applying 
this method.  This approach was first introduced by Mack [1993]. 
 
Let us start with some general remarks: 
 
In the additive model, the ultimate loss Cin was written in the form 
 
(3.1)  Cin = Si1 + … + Sin
 
with the  being the “additive increment” in development year k, and then 
we went on looking for estimators of .  A natural multiplicative approach is 
to start with the identity  

ikS

ikS

 
(3.2) Cin = Ci1 Fi1 Fi2  … Fin-1
 
with Fik = Ci,k /Ci,k-1 being the “multiplicative increment” in development year k, 
or the k-th individual development factor in year i.  In a loose sense, all we 
need to do is to look for estimators of the Fik.  
 
Although the resulting formulas are quite similar to the ones developed in 
section 2, more care needs to be taken when manipulating terms - some 
technical difficulties will arise from the simple fact that the Expectations-
operator is additively linear, but not compatible with respect to multiplication, 
since the Cik are not uncorrelated within the underwriting years, and thus in 
general we would have ( ) )(/)(/ 1,1, ikkiikki CECECCE ++ ≠ .  To overcome these 
difficulties we will have to remind ourselves of the notion of Conditional 
Expectation and the role it plays in finding optimal predictors. 
 
Let us see if we can motivate a model-assumption by anticipating the CL-
method: 
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When projecting the ultimate loss Cin (or next year’s loss Cik) in the 
underwriting period i through some set of development factors { }, we want 
to apply some formulae like 

kf̂

 
(3.3)  nininiin ffCC ˆˆˆ

1, ⋅⋅= −−+ K

 
or 
 
(3.4)  kkiki fCC ˆˆ

1,, −=
  
which do not use any of the loss-information of the older development 
periods.  Here we are making a strong implicit assumption!  Why, we may 
ask, don’t we use some form of average of the possible projections: 
 

3.3’)  

ninini

ni

ni

ffC

ffC

ffC

ˆˆ

ˆˆ

ˆˆ

21,

32

21

⋅⋅

⋅⋅

⋅⋅

−+−+ K

L

K

K

 
A plausible answer seems to be, that we implicitly assume that we cannot 
improve our estimator of Cin  by using the information given in the older Cik. 
 
Stated differently, we implicitly assume that we cannot improve our estimator 
of  by using any of the Ckf̂ i1,…, Cik-1 . The same reasoning applies to the fact 
that we do not use any of the information of the preceding underwriting 
periods.  Translating these thoughts into the language of probability leads 
directly to the following:  We assume that there are factors  such that kf
 

(CL 1) nknifCC
C
C

E kiki
ik

ik ≤≤≤≤=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−

2;1,, 11
1

K  

 
which is the multiplicative Chain-Ladder assumption corresponding to 
equation (AM 1).   
 
The concept of conditional expectation is crucial to understanding the 
assumption we are making here.  Bear in mind that a conditional expectation 
is a function and not just a number.  So let us reword (CL 1) once more. In a 
sense that can be made mathematically precise, the equation  
 
(CL 1) ( ) nknifCCCCE kkiikiki ≤≤≤≤= −− 2;1,, 1,11, K  
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tells us the following: among all functions of the known part of 
the triangle, the best predictor of  is just the function 

 for some unknown parameter . 

),,( 11 −iki CCg K

kiC ,

kkiikik fCCCg 1,1 ),,( −− =K kf
 
We are not done yet – we will also need a model assumption for the variance 
that corresponds to (AM 3).  Viewing  as an exposure-measure in (CL 1), 
it may not come as a surprise if we write down in analogy to the additive 
method: 

kiC ,

 

(CL 3)  nkni
C

CC
C
C

Var
ki

k
iki

ki

ki ≤≤≤≤=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

−

2;1,,
1,

2

11
1,

, σ
K  

 
Recall that by definition  }|)]|({[)|( 2

,,, DDCECEDCVar kikiki −=
It is probably even more difficult to attach an intuitive meaning to (CL 3) than 
for (CL 1).  Let us try, though: we re-write (CL 3) expressing it in the form: 
 
(CL 3)  ( ) nkniCCCCVar kkiikiki ≤≤≤≤= −− 2;1,, 2

1,11, σK  
 
We can state (CL 3) in loose words as follows: among all functions 

, the best predictor of the squared distance between the 
estimate in (CL 1) and is given by  for some 
parameter . 

),,( 11 −iki CCh K

kiC ,
2

1,11 ),,( kkiiki CCCh σ−− =K

kσ
 
A justification for (CL 3) may become clearer as soon when we look at the CL-
estimators for .  It is precisely assumption (CL 3) that will make the CL-
estimators for  optimal. 

kf

kf
 
And finally, we make the assumption 
 
(CL 2)  The underwriting years { Ci1 , …, Cin} are globally independent, i.e. the 
sets { Cj1 , …, Cjn} are independent for i≠j . 
 
Although this assumption is quite strong, it is plausible and – more importantly 
– statistically testable. 
 

3.2 The estimators of the model parameters 
 
Starting from the model-assumptions (CL 1) – (CL 2), it turns out that similar 
results like those obtained above for the additive method can be derived. 
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The estimators 
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are unbiased estimators of mk and σk

2. 
 
 
 
Just like in the additive case, equation (3.5) can be thought of as a weighted 

mean of the individual development factors
1,

,
,

−

=
ki

ki
ki C

C
F , this time the weights 

being the current cumulative loss .  Indeed, rearranging the sum gives us kiC ,
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and since each of the individual  is an unbiased estimator of , so is their 

weighted mean .  Again, the particular choice of weights is justified by the 
following fact, which we state without proof: 

kiF , kf

kf̂

 
 

The weighted mean as given in (3.5) has the smallest variance 
among all linear unbiased estimators of . kf

 
 
This last observation shows why it may be justified to claim that anyone using 
the Chain-Ladder method with the development factor (3.5) has implicitly 
relied on the model assumptions (CL 1)-(CL 3). 
 
The interpretation of (3.5) similar as in the additive case, only that the 
exposure this time is the “cumulative loss in the preceding year”: 
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Illustration: Cumulative incurred losses up to 2nd development year
1 2 3 4 5

1999 716              3,501      
2000 533              2,350      
2001 753              3,212      
2002 664              3,550      
2003 1,036           4,421      
2004 840              

Individual development factors in the 2nd development year
1 2 3 4 5

1999 4.89        
2000 4.41       
2001 4.26        
2002 5.34        
2003 4.27       
2004

2,2000F

2,2003F

1,2000C

1,2003C

 
 
We may have an eye on two things:  Firstly, how volatile the individual factors 
are within each development period and secondly, how much weight is 
assigned to each individual factor.  This check should always be done, as the 

 can be quite volatile in the first or last underwriting years and may have 
erratic high values.  These would be carried forward in the calculation of the 
standard error.  In this case, it might make sense to smoothen the extreme  
by means of a regression as will be outlined in the last chapter. 

2
kσ

2
kσ

 
We may also spot trends in the development factors here, although this is 
more systematically examined by looking at residuals as will be explained in 
later. 
 
Note that there can be no estimator for the last , because there is only one 
data point in the upper right corner of the triangle and thus no estimator for 
the variability of development factors.  We may set  to 0 if the data are run-
off, otherwise we may try to interpolate through a regression from the 
preceding . 

2
nσ

2
nσ

2
kσ

 

3.3 Analysis of variability 
 
The standard error of the Development Factor 
 
The variance of the estimator of the development factors is given by 
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(3.8) ( )
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= kn
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ˆ σ  

 
This formula can be derived directly and will be justified once more later via 
regression-analysis in section 5.  The estimator in (3.6) for kσ  gives us an 

estimator for ( )kfVar ˆ .  Note that just like in the additive case, ( )kfVar ˆ  is 
determined by the fluctuations of the individual  around their weighted 
mean, which can be seen by inserting (3.6) into (3.8).  It is therefore helpful in 
practice to look at the triangle of individual development factors in order to 
understand where the variability comes from. 

kiF ,

kiF ,

 
 
The standard error for a single underwriting year 
 
The whole exercise from the additive case can be carried out in the 
multiplicative case in a similar fashion.  There are recursion formulae for the 
Process and Estimation Error, respectively, and for the Prediction Error of the 
projected loss.  We try to give an intuitive understanding of the formulas 
without even attempting any formal proof.  This shall not conceal the fact that 
the results quoted in this section are far from obvious and that the rigorous 
proofs form the hardest bit of the whole theory.  The interested reader may 
refer to Mack [1994] and Mack (1999). 
 
The Process Error for a single underwriting year is: 
 
(3.9)  2

1,
2

1,1, )|()|()|( +++ += kkikkiki fDCVarDCEDCVar σ
 
which allows a similar interpretation as in the additive case: the first term 
contains  which measures the variation of the individual 
factors  around their “true” mean , i.e. the Process Error.  And we add 
the Process Error of the preceding period increased by the development 
factor. 

kikki CFes ,
22

, /).(. σ=

kiF , kf

 
The Estimation Error for a single underwriting year is given by: 
 

(3.10) ( ) ( ) 2
1

2

,,
2

1
2
,

2

1,1,
ˆ)|(ˆ)ˆ.(.ˆ)|(ˆ
++++ −+=− kkikikkikiki fDCECfesCDCEC  

 
Again, the term  measures the variation of the average estimated 

development factor  from the “true” factor , i.e. the Estimation Error. 

)ˆ.(. kfes

kf̂ kf
 
For the Prediction Error we thus write: 
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We may reformulate the above formula once more in a more simplified 
notation: 
 

 
Recursion for the standard error of a single underwriting-year: 
 
(3.12) ( ) ( )2,
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2
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The total standard error  
 
With the exposure term ∑ +−=

=
n

kni kik Ch
1 ,  corresponding to the development 

year k+1 the following recursion formula for the total standard error of 
 holds for k = 2,…, n-1: ∑=

=
n

i kik CC
1 ,

ˆ

 
 

Recursion for the total standard error: 
 

(3.14) ( ) ( )22
1

2
1

22
1

2

1
ˆ..ˆ)ˆ.(.ˆˆ.. kkkkkkk CesffeshhCes ⋅+⋅+= ++++ σ  

 
 
with the start value ( ) ( )22,

2

2
ˆ..ˆ.. nCesCes = .   

 
The reader may note the formal similarity between the recursion formulae of 
the Chain-Ladder and the Incremental Loss Ratio estimates.  It is indeed 
possible to design a complex set-up in a spreadsheet that does the job in both 
cases, though this does not enhance transparency. 
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SECTION 4: CALCULATION OF A RISK MARGIN 
 
Once the mean and the standard error of the underlying loss-distribution have 
been estimated, it is possible to further use this information in order to 
calculate a so-called risk-margin corresponding to a given level of adequacy.  
It cannot be recommended to stick to a distribution-free approach at this point, 
e.g. with a one-sided version of Chebyshev's inequality such as 

)1(1)).(.)(( 2αα +≤⋅≥− XesXEXP .  Such a general inequality cannot lead to 
sharp results.  In practice often an additional assumption with respect to the 
shape of the underlying loss-distribution is made. 
 
A popular and simple approach consists of assuming that the total 
outstanding claims provisions follow a Log-Normal-Distribution, 
i.e. , where the parameters),(log~ 2σµNOCP µ  and σ  are uniquely 
determined by the mean and the coefficient of variation of the underlying 
distribution. For the sake of completeness we recite the basic formulas for the 
required parameters. With E(OCP) and CV denoting the mean and coefficient 
of variation, respectively, we have: 
 

)1log( 22 CV+=σ  
2

2
1))(log( σµ −= OCPE  

 
If we now require the level of adequacy to be x%, we first calculate the x%-
percentile p of the standard normal distribution.  The x% percentile P for the 
original loss distribution is then given by the expression 
 

)exp( 2σµ ⋅+= pP  
 
The resulting risk margin is then often expressed as a percentage of the 
central estimate. 
 
Two comments may seem appropriate here: 
 

1. The log-normal model is an assumption that may not be justified in 
each single case and one should be aware of some peculiar features of 
this distribution.  In particular, the Log-Normal-Distribution implies a 
maximum possible risk margin of approximately 25.5%, which is 
reached by a coefficient of variation of 75% and is then declining as a 
function of the CV.  The pure formulaic approach as outlined above 
may therefore not be suitable for highly volatile classes. 

 
2. It is important to bear in mind that the thus derived risk margin applies 

to the respective triangle as a single entity.  If the underlying class of 
business forms a subclass of a insurer’s portfolio then, on an overall 
basis, the insurer will benefit from correlation effects.  As a result, the 
sum of the individual risk margins of all subclasses can be substantially 
higher than the actually required risk margin on the aggregated total 
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level.  In order to take those effects into account in accordance with 
APRA’s GPS 210, one may discount the individual segment margin by 
some estimated “diversification benefit”.  This critical issue is not 
further addressed in this paper. 
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SECTION 5: TESTING THE MODEL ASSUMPTIONS 
 
In the sequel, we will introduce some means with which to test whether the 
model assumptions for either the additive or the multiplicative method are 
fulfilled.  This should form an important step in any proper statistical analysis.  
It turns out that the model-assumptions of the additive and the multiplicative 
method can be interpreted as a linear regression, an area in which statistical 
tests are well understood and are included in most statistical software 
packages.  We quote the most basic tests.  A nice overview of the deeper 
connections between the presented Chain-Ladder-type methods and their 
interpretation as weighted regressions can be found in Murphy [1994].  This 
section relies heavily on Mack [1994].  The interested reader will find much 
more on testing in this article. 
 

5.1 Testing the Additive Model 
 
Let us recall the model assumptions for the Incremental Loss Ratio method: 
 
(AM 1)  ( ) kiik mvSE =
(AM 2) The individual payments Sik in each underwriting/development year are 

independent for all i,k. 
(AM 3)  ( ) 2

kiik svSVar =
 
For a fixed k, the model-assumptions can be viewed as a linear regression of 
the form 
 
(5.1) iii bxaY ε++=  
 
with  and .  Looking at the error term 0=a bmk = iε  we see that because of 
 
(5.2)  ( ) 2

kii svVar =ε
 
the variances for each observation are not constant.  Such regression models 
are called heteroskedastic (as opposed to the equal variance models that are 
called homoskedastic).  Since the parameter  is unknown, but the weights 

 are known, textbook theory has it that the best linear unbiased estimator 
for  is determined via weighted least squares. It is the unique value that 
minimises the expression 

2
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The formula means that we “downweight” the squared residuals for those 
observations with large variances. It turns out that the solution to (5.3) is 

 23



indeed the estimate  from equation (2.1), and the variance of this 
estimator coincides with the variance given by (2.4)!  Thus the whole 
machinery known from statistical textbooks to test the linearity (AM 1) and the 
variance assumption (AM 3) can be applied.  This is usually done by plotting 
the data and residuals. 

km̂

 
As a start we may plot the  against the  in order to confirm that there is 
indeed a reasonable linear relationship.   

iv kiS ,

 
As a next step we plot the residuals, i.e. the deviations of the known 
outcomes to the fitted curve.  In general, if the chosen model is a good one, 
then the residuals should reflect only random fluctuation of the data around 
the fitted line.  To be precise, we plot the weighted residuals, since we are 
dealing with a weighted regression where the deviations from the fitted curve 
are expected to “fan out”. 
 
Thus, we plot the residuals 
 

(5.4) 
i

kiki

v
mvS ˆ, −

 

 
against the exposure . Ideally, this graph will show no pattern but only 
“noise”. 

iv

 
In practice, it is hard to draw conclusions from this check for small triangles or 
development years with thin data, i.e. the later development years. 
 

5.2 Testing the Multiplicative Model 
 
The Chain-Ladder model can be tested in the same way. For the sake of 
completeness we repeat the basic findings.  First, let us recall the three basic 
Chain-Ladder assumptions: 
 
(CL 1) ( ) kkiikiki fCCCCE 1,11, ,, −− =K  
(CL 2) Independence of the underwriting years 
(CL 3) ( ) 2

1,11, ,, kkiikiki CCCCVar σ−− =K  
 
Again, for a fixed k, the model-assumptions can be viewed as a 
heteroskedastic linear regression. 
 
The best linear unbiased estimator for  is determined via weighted least 
squares by minimising the expression 

kf
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and its unique solution is the Chain-Ladder estimate  from equation (3.5), 
and its variance coincides with the variance given by (3.8)!   

kf̂

 
We may plot the  against the  in order to confirm that there is indeed 
a reasonable linear relationship.  In practice, it might be better to plot 

 against  instead, the required slope of the regression line 
is then . 

1, −kiC kiC ,

1,,, −−= kikiki CCS kiC ,

1−kf
 
The corresponding residuals become 
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which are plotted against the known .  This graph should show no pattern 
but only “noise”.   

1, −kiC

 
It is worth noting that the residual analysis can be further refined to test if 
other variance assumptions than (CL 3) are more in line with the given data.  
A thorough discussion is beyond of the scope of this article.  The interested 
reader is referred to Mack [1994]. 
 

5.3 Checking for calendar-year effects 
 
Before we could to apply the regression-analysis in the preceding subsection, 
we had to assume that (CL 2) is already fulfilled (or that at least the 
underwriting years are uncorrelated).  As mentioned before, this is in fact a 
quite strong statement because in reality there is a range of factors which may 
violate such an assumption.  It is out of the scope of this article to introduce a 
thorough test for independence.  The reader who is seeking more depth is 
referred to Mack [1994].  Here, we illustrate a simple but useful test to check 
for so-called calendar-year effects.  And indeed, one of the major reasons 
why the independence of the underwriting years (CL 2) is violated can be 
attributed to calendar-year effects.  Calendar-year effects may be caused by 
changes of legislation or claims handling or in irregular inflation, to name but a 
few. 
 
Calendar-year effects are acting on the diagonals of the run-off triangle, i.e. 
they affect several underwriting years in different development periods. 
 
Statistically speaking, a calendar-year effect will produce increment ratios or 
cumulative losses that are systematically higher (or lower) than what would 
have been predicted by the increment ratios or development factors by the 
model. 
 
Thus, if we plot the standardised residuals 
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against the corresponding calendar-year i+k-1 we expect only “white noise” if 
the model-assumptions are fulfilled.  If, on the other hand, these residuals all 
have the same sign for a fixed calendar-year, then this could be an indication 
for a calendar-year effect and must be further investigated since a mechanical 
application of the Incremental Loss Ratio or Chain-Ladder method would now 
use increment ratios that are systematically too high in every development 
period!  It is probably safest to disregard the whole diagonal by means of 
setting “weights” as will be explained in the next section. 
 
Apart from spotting calendar-year effects, plotting the residuals (5.7) and (5.8) 
can also help detecting large deviations of single individual development 
factors from their weighted mean.  The graph then becomes a useful tool in 
connection with the setting individual weights and can be quickly analysed.  A 
more formal statistical test for calendar-year effects is developed in Mack 
[1994]. 
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SECTION 6: PRACTICAL CONSIDERATIONS 
 

6.1 Dealing with outliers 
 
In almost cases in practice, it will not make sense to apply the Mack too 
mechanically, because the data may be distorted by outliers and calendar-
year effects – or one may feel that it is more appropriate to use only the last 
few diagonals because the underlying business has changed, to name but a 
few reasons.  Consequently, one may decide to manually adjust the 
respective development factors and in principle there is nothing wrong with 
that approach.  However, this procedure leaves the actuary with the problem 
of also adjusting the corresponding sigmas or standard errors, which is less 
intuitive.  Yet there is a more precise way of how to tackle this issue.  We only 
need to “rewrite” all formulas, this time omitting those individual increment 
ratios or development factors which we regard as outliers. The formal 
procedure and underlying theory are in fact quite simple, however it seems 
that it has not been fully appreciated by the actuarial literature.  An example of 
how to realise the proposed procedure in practice can be found in the 
accompanying Excel spreadsheets. 
 
 
Formalism of setting weights 
 
Formally, the approach looks as follows:  We start by looking again at the 
formula for the incremental loss ratio, expressed as a weighted mean.  In 
principle there is nothing stopping us from using a different set of weights, say 

 in order to reflect the credibility we put into .  In this case, the 
corresponding formulas for the increment ratios translate naturally to 

kiki Sw ,, ⋅ kiS ,
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and for the parameters relating to the s.e. we have 
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where  denotes the number of incremental loss ratios that are taken into 
account in year k and 
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From here we can proceed in the usual way, say via the recursion formula 
etc. 
 
The modification through weights corresponds to slightly modified versions of 
the original model assumptions.  A more rigorous discussion for the Chain-
Ladder method can be found in Mack [1999].  As long as we are only 
“deselecting” outliers we are only interested in the case where  and 
the modifications stay simple. 

{ }1,0, ∈kiw

 
In a similar fashion the formulas in the Chain-Ladder method can be amended 
to account for outliers.  The formulas for the development factors and the 
sigmas become then, respectively: 
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where |  denotes the number of individual development factors that are 
taken into account and 

| I
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The weighting procedure as introduced herein may look harmless and it is 
indeed mathematically trivial.  Yet it is probably one of the key mechanisms to 
be employed when working in practice and can also be incorporated when 
working with spreadsheets as the accompanying workbook shall demonstrate. 
 

6.2 Deciding between the multiplicative and additive model 
 
General remarks 
 
So far we have introduced two different methods of projecting claims, and 
have given some basic statistical tests to test the underlying model 
assumptions.  Apart from the statistical tests, it is also important to have a 
less formal understanding of how these projection-methods work and where 
the caveats lie.  The reality will often be that one has to decide which model is 
the “lesser evil”. 
 
In an imprecise way we may first note the following: if the outstanding reserve 
is mainly determined by the run-off of already reported claims, this is an 
indication that the multiplicative method may lead to more stable results.  If on 

 28



the other hand the portfolio is more affected by genuinely late-reported IBNR-
claims, the additive method might be favoured, as the additive method is 
indifferent to the loss development that has been observed so far. 
 
Furthermore, for the most recent underwriting years (the data in the lower left 
corner of the triangle) the multiplicative method may not applicable because 
no losses have been reported, and thus the multiplicative projection will 
forecast 0 claims.  In this case one might be forced either to apply some 
additive projection for the most recent underwriting years, or estimate the lost 
in the first development year by other means. 
 
Another important remark must be made with respect to the Incremental Loss 
Ratio method:  if the underwriting-year premium is chosen as an 
exposure measure, then the Incremental Loss-ratio Method makes only 
sense if the premium-volume does in fact reflect the size of the 
underlying business.  In other words, premium cycles or rate hardenings 
need to be corrected before the additive method can be applied. 
 
Overall, the choice of model and the degree of trust that the actuary may put 
into their results will always be of judgement and experience.  
 
 
Graphical interpretation 
 
Another very simple yet quite useful tool in analysing the appropriateness of 
the respective model-assumptions consists of plotting appropriate graphs of 
the run-off data. 
 
The rational behind this procedure is nothing but the fundamental assumption 
that the future payments will be somehow similar to what has happened in the 
past.  This is so obvious that it seems hardly worth mentioning. Yet this 
remark leads to a very simplistic but useful rule of thumb when the actuary 
has to decide which of the two proposed methods could be given preference. 
 
The key assumption in the additive case is that the loss ratios increase by a 
certain amount in a particular development year, the amount being the same 
for all underwriting years, except for random noise.  In formulas: 
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Therefore, a plot of the development periods against loss ratios for all 
underwriting years should show that the resulting graphs are parallel to each 
other. 
 
In the multiplicative case the key assumption was that within a specified 
development year, the cumulative loss amounts of each underwriting year are 
multiplied by the same factor except for random noise.  This in turn means 
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that the logarithms of the cumulative losses increase by the same amount.  
Speaking in formulas, we have for the Chain-Ladder model: 
 
(6.8)  kkiki fCC logloglog 1,, += −

 
As a result, the graphs of the underwriting-years in a dev-year/logarithmic 
cumulative-loss-space should be parallel. 
 
To sum it up, a rough check as to wether the data has behaved according to 
either model consists of plotting two graphs looking roughly like the following: 
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If we intend to apply the Incremental Loss Ratio method, then the graph on 
the left hand side should show a parallel pattern.  And if we intend to apply the 
Chain-Ladder method, then the graph on the right hand side is the appropriate 
interpretation of the data. 
 
In fact, the additive or multiplicative projection methods can be interpreted as 
“parallelly projecting” the loss experience of the older underwriting years in a 
loss ratio graph or logarithmic dollar-graph, respectively.  The incremental 
loss ratio or development factor in year k is nothing but an average of the 
observed slopes in that development year. 
 
The graphical representations are often helpful in many respects, not only 
when deciding between the two models.  It may be possible to spot trends, 
outliers or other peculiarities.  For example, in the above data-example, we 
can spot immediately an erratic spike in years 2 and 3 of the underwriting year 
1997.  As a consequence, these two individual development factors must be 
taken out by means of the weighting procedure described above. 
 
Furthermore, it is sometimes possible to immediately identify an appropriate 
range of underwriting periods and calendar years in which the data show the 
most homogenous pattern and just “get a feel” for the run-off behaviour. 
 
Overall, the usefulness of these two graphs when interpreting either method 
can hardly be overestimated. 
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6.3 Reduction of parameters 
 
As a final refinement we discuss how the sigmas and development factors 
might be smoothened or the run-off extended via regression techniques.  This 
section is based on Mack [1997, 2002].  The reader who is not familiar with 
weighted regressions may find this section difficult, although the basic idea of 
fitting a curve through the parameters is quite straightforward. 
 
The Sigma-Regression 
 
We have already indicated that the “sigmas” of both methods can be quite 
volatile without indicating how to possibly deal with this difficulty. 
 
The considerations in this subsection can in principle be applied to both the 
additive and the multiplicative method. However, it seems that in the additive 
case it is much harder to fit a curve through the  than through the , 
which is why we restrict our discussion to the Chain-Ladder method.  Yet it 
must be pointed out that for both methods there is no logical connection 
leading from the model assumptions to the smoothening-approach suggested 
here. 

2ˆks 2ˆ kσ

 
As a starting point, one might first want to plot the  on a log-linear scale 
and investigate any extreme outliers by analysing again the triangle of 
individual development factors.  If the  seem to decline in a log-linear 
fashion from a certain development period k onwards, a formal curve fitting 
approach becomes: 

2ˆ kσ

2ˆ kσ

 
(6.9) ( ) ck

kiikiki eCCCCVar −
−− = 2
1,11, ,, σK  

 
This approach does not affect the optimal estimators for  since the  differ 
from each other only through a constant factor.   In theory, the “most suitable” 
regression for c and  depends on the respective variances of the  - 
which are unknown.  Yet some intuitive reasoning can help: it is plausible to 
expect the respective unknown variances of the  to decrease, the more 
data points are included in their estimation, with the decrease proportional to 
the number of data points taken into account (e.g. the variance of the 
estimator of a sample mean shows exactly this behaviour).  Therefore it 
seems at least plausible to use the reciprocal of (n-k-1) as a weight for  in a 
regression.  The corresponding expression to be minimised in order to 
estimate 

kf 2ˆ kσ

2σ 2ˆ kσ

2ˆ kσ

2ˆ kσ

σ  and c can then be written as 
 

(6.10)  ( )222
2

1
)log()ˆlog()1( ck

k

n

k
ekn −

−

=

−−−∑ σσ

 
There is no neat expression for the solutions for σ  and c, and some statistical 
computer package or a solver function might be the method of choice. 

 31



 
The resulting smoothed sigmas may then be used to recalculate the standard 
errors of the factors and estimators, in particular for the first and last 
development years. 
 
 
Regression of development factors 
 
In a similar way, we can fit a curve thorough the development factors in order 
to smoothen or extend the run-off.  Again, experience shows that in the 
multiplicative case the factors often decline in a log-linear fashion, at least 
from a certain development year on (e.g. from the 2nd or 3rd development 
year).  So we may again start with a relation like 
 
(6.11)  bk

k aef −+= 1
 
and then determine a and b.  As with the sigmas, we should weight the 
regression with the variances of the , which we have already calculated at 
this stage. 

kf

 
Therefore, the expression to be minimised becomes 
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−

=

−−−1
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In order to keep the expressions as simple as possible, we may use the  
from the sigma-regression, in which case minimising (6.12) is equivalent to 
minimising 
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Again, there is no neat explicit expression to solve (6.13) but some solver-
function will do the trick. 
 
The biggest difficulty that arises from here consists of the derivation of a 
theoretically correct standard error that corresponds to the factors from the 
regression.  This is far from trivial and may depend on additional assumptions.  
We will not address this difficult issue in this paper.  One may use formulas 
like (3.8) together with the sigma-regression, and then apply the recursion-
formulae, although as a word of warning it must be stressed that this 
approach is not easily justified theoretically. 
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Appendix A: Formulas for the Incremental Loss Ratio method 
 
The increment ratio 
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Projected loss in underwriting year i and development year k+1: 
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Standard error of the incremental Loss Ratio: 
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Standard error for the projected loss underwriting year i and 
development year k: 
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The standard error of the total reserve: 
 

∑ +−=
=

n

kni ik vu
2

 
 

( ) ( ) ( )22222

1
ˆ..ˆ..ˆˆ.. kkkkkk CesmesusuCes +⋅+⋅=+  

 

 33



 
Appendix B: Formulas for the Chain-Ladder method 
 
The development factor: 
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Standard error of the development factor: 
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Standard error for the projected loss underwriting year i and 
development year k: 
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The standard error of the total reserve: 
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