

© Institute of Actuaries of Australia

Financial Services Forum Expanding Our Horizons

Valuation of Long Term Equity Options and Guarantees under Stochastic Interest Rates

Bernard Wong, UNSW

Outline

- 1. Long Term Guarantees and Interest Rate Variability
- 2. HJM framework and applicable models
- 3. Simulation methods: Issues and Tools

Long Term Contracts

- Examples:
 - Executive Share Option Plans
 - Embedded Equity Return Guarantees
- Standard Approach: Black-Scholes framework
 - Theory well understood (mathematical finance)
 - Numerical methods widely available
 - Deterministic Term Structure

Example: European Call

- Guarantee: Earn at least current risk free rate
- Stock: Geometric Brownian Motion, initial price 100.
- Compare Prices under:
 - constant risk free rate
 - Ho-Lee stochastic term structure

Example: European Call

Term	Constant	Ho-Lee
(years) 10	25.3	28.9
0.25	4.0	4.0

Importance of Interest Rate Variability

- May be significant for long term contracts
- Typically insignificant for short term contracts
- Also depends on
 - Parameters
 - Guarantee Type
- Trade-off between
 - Sophisticated Modeling (Computation Effort)
 - Significance to Results

Theory: Derivative Pricing

• Standard Pricing Theory:

$$E_{Q}\left[\mathrm{e}^{-\int_{0}^{T}r(t)dt}\left(S\left(T\right)-K\right)^{+}\right]$$

- Heath-Jarrow-Morton framework
 - Current Term Structure as input
 - Consider forward rate curve f(t,T)
 - Apply No arbitrage condition

HJM – forward rates

• The Q dynamics of the forward rate f(t,T) is

$$df(t,T) = \sigma(t,T) \left(\int_{t}^{T} \sigma(t,s) ds \right) dt + \sigma(t,T) dW(t)$$

- short rate: r(t)=f(t,t)
- The volatility functions selected via
 - Historical Volatility Curve
 - Ease of Implementation
 - (Fit to actively traded interest rate derivatives)

HJM - Assets

Savings Account

$$B(t) = \exp\left\{\int_0^t r(u)du\right\}$$

• ZCB with maturity T

$$dZ(t,T) = Z(t,T) \left(r(t) + \frac{1}{2} \varphi^2(t,T) \right) dt + Z(t,T) \varphi(t,T) dW$$
$$\varphi(t,T) = -\int_t^T \sigma(t,u) du$$

Stock

dS(t) = r(t)S(t)dt + vS(t)dW

HJM – short rate models

- These will give good candidate models for our purposes.
- Ho-Lee

$$\sigma(t,T) = \phi$$
$$dr = \theta(t)dt + \phi dW$$

- Brownian Motion with drift under Q, Gaussian

HJM – short rate examples

Vasicek

$$dr(t) = \alpha \big(\kappa(t) - r(t)\big) dt + \phi dW$$

- Mean Reversion, Gaussian
- Cox-Ingersoll Ross

$$dr(t) = \alpha \left(\kappa(t) - r(t) \right) dt + \phi \sqrt{r(t)} dW$$

- Strictly Positive (Non-Central Chi-Squared)

© Institute of Actuaries of Australia © Institute of Actuaries of Australia Expanding Our Horizons

HJM - Calibration

- Calibration to current term structure.
- Could involve extrapolating yield curve
- For many pricing models, only need – calibration of integrals $\int_{t_i}^{t_{i+1}} \theta(u) du$
 - calibration to a fixed/small number of dates

Simulation Model – First Approach

• Theoretical Model:

$$d\ln S(t) = r(t)dt - \frac{1}{2}v^{2}dt + vdW$$
$$dr = \theta(t)dt + \phi(t)dW$$

- ullet
- Need Increments of process

$$\ln S(t_{i+1}) = \ln S(t_i) + \int_{t_i}^{t_{i+1}} r(u) du - \int_{t_i}^{t_{i+1}} \frac{1}{2} v^2 du + \int_{t_i}^{t_{i+1}} v dW$$
$$r(t_{i+1}) = r(t_i) + \int_{t_i}^{t_{i+1}} \theta(u) du + \int_{t_i}^{t_{i+1}} \phi(t) dW$$

© Institute of Actuaries of Australia © Institute of Actuaries of Australia Constitute of Actuaries of Australia

Euler Scheme

Discrete Approximation

$$\ln S(t_{i+1}) = \ln S(t_i) + r(t_i)(t_{i+1} - t_i) - \frac{1}{2}\upsilon^2(t_{i+1} - t_i) + \upsilon(W(t_{i+1}) - W(t_i))$$

$$r(t_{i+1}) = r(t_i) + \theta(t_i)(t_{i+1} - t_i) + \phi(t_i)(W(t_{i+1}) - W(t_i))$$

- Requires only Gaussian random variables
- Flexible

Discretization and Simulation

- Discretization: additional Error
- Mean Squared Error = Variance + Bias
- Trade-off:
 - Computational Effort
 - Small MSE

Managing (Simulation) Variance

- Variance Reduction Methods
 - Control Variates
 - Stratified Sampling
 - Importance Sampling
 - Combination
- Best method generally problem-specific
- For current setup, CV can be very efficient

Managing Variance - Control Variates

- Couple payoff of interest with a related variable whose expected value is known
- New Estimator $\overline{Y}(b) = \overline{Y} - b(\overline{X} - E[X])$
- Optimal coefficient

$$b = \frac{Cov(X,Y)}{Var(X)}$$

• Ratio of Variance Reduction $1 - Corr(X,Y)^2$

Managing Variance - Control Variates

- Very useful CV Option with no interest rate variability
- Same Brownian increments used, but with interest rate variability turned off
- Typically the CV has either
 - Closed form solution
 - Very efficient numerical procedures (simulation or otherwise)
- Eg: Call Option: 95% correlation

Managing Bias

- Simple Euler scheme can have significant bias.
- Finer Time-steps:
 - Lower bias
 - Significant computation effort (long term contracts)

Financial Services Forum Expanding Our Horizons

Managing Bias – Richardson Extrapolation

- With time steps of size h $E[f(S_h)] = E[f(S)] + ch + o(h)$
- With time steps of size 2h $E[f(S_{2h})] = E[f(S)] + c2h + o(h)$
- Combining: $2E[f(S_h)] - E[f(S_{2h})] = E[f(S)] + o(h)$

Managing Bias – Richardson Extrapolation

- Method is simple to implement
- Correlation between $f(S_h)$, $f(S_{2h})$ important for minimal variance
- Can use the same Brownian increments for the 2 estimators

Managing Bias – Exact r

- The current simulation setup requires discretization of both
 - r(t)
 - Integral of r(t)
- With some models it is possible to simulate r exactly
 - Ho-Lee, Vasicek: Gaussian
 - CIR: non-central Chi-Squared

Managing Bias - Exact integral

- For Gaussian models it is possible to simulate directly the integral of r(t)
- Sum of normals
- Involve 0 discretization error

Managing Bias – a note on Correlation

- Correlation between stock returns and interest rate variability can complicate procedures
- Note:
 - Instantaneous Correlation
 - Effect of Correlation of Final output often negligible

Conclusions

- Interest Rate Variability can be important for some long term guarantees
- Tradeoff between sophistication and computation effort
- Consider model choice, and methods of
 - Variance Reduction
 - Bias Reduction
- Solution will be Problem-Specific

Expanding Our Horizons Extension: Stochastic Volatility, Jumps

Financial Services Forum

- Alternative stock price models can be allowed for in the simulation approach.
- Stochastic Volatility Heston model
- Euler Scheme with extrapolation

Actuaries of Australia

- CV some SV models have essentially closed form prices
- Jumps: Poisson jumps can be allowed for

Reference and Support

- Main references:
 - Glasserman (2004): Monte Carlo Methods in Financial Engineering
 - James and Webber (2000): Interest Rate
 Modelling
- Acknowledgement:
 - Discussion and Research Assistance by Maiyuran Arumugam and Ishtiaq Faiz
 - Support from FCE research grant