

Weather Derivative Pricing and Risk Management Applications

Jon Tindall

Overview

- 1. Introduction
- 2. Pricing Principles
- **3. Temperature Derivatives**
- 4. Rainfall Derivatives

1. Introduction

Introduction

First formal recorded transaction in 1996 – Enron and Energy-Koch .

- HDD swap Milwaukee, winter 1997
- De-regulation of energy industries mainly in US and Europe.
- Initially used as a hedge against variability in electricity supply.

US Department of Commerce estimates that weather adversely affects:

- 70% of all US companies;
- 22% of total GDP.

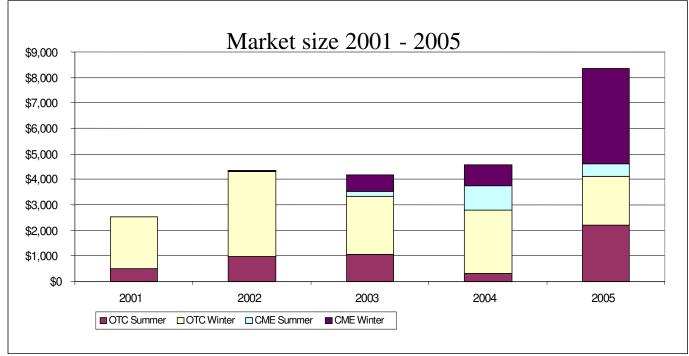
Financial Services Forum Institute of Actuaries of Australia

Weather Markets

Expanding Our Horizons

- Mature Over-the-Counter (OTC) market:
 - Existed since early 1990's.
 - Specifically 'tailored' products.
 - Large European banks and insurance brokers.
- Chicago Mercantile Exchange (CME):
 - operates electronic exchange for weather derivatives.
 - futures and option contracts over US and Canadian cities.
 - 55% of total global turnover in 2005.
- \succ L.I.F.F.E Closed in 2004
 - series of contracts based on daily average temperatures in London, Paris and Berlin.

Market Size



* Source: PwC 2005 Market Survey

Stagnant after Enron collapse.

>2005 shows strong growth may be returning.

Contracts

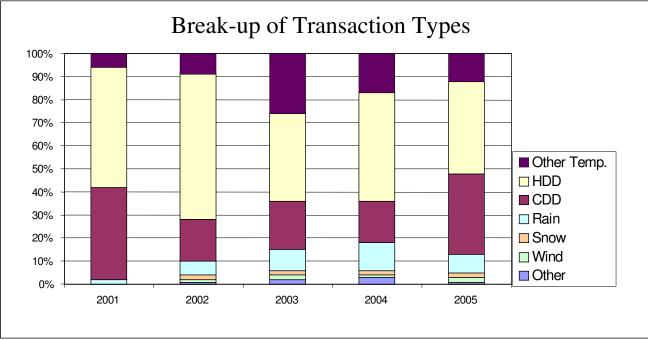
Contract Types:

- Futures CME, OTC.
- Options Majority of transactions to date.
- Swaps increasing in popularity.

Underlying Variables:

- Temperature
- Rainfall
- Wind Speed
- Snow Fall
- Barometric Pressure

Contract Types



* Source: PwC 2005 Market Survey

► Large increases in rainfall contracts.

>CDD now equal with HDD contracts.

© Institute of Actuaries of Australia © Institute of Actuaries of Australia

Temperature Derivatives

- > Average daily temperature $T_i = \frac{T_{\text{max}} + T_{\text{min}}}{2}$
- The most popular derivative contracts are over Heating Degree Days (HDD) and Cooling Degree Days (CDD).

$$HDD = \sum_{month} \max\{0, (\overline{T} - T_i)\}$$

$$CDD = \sum_{month} \max\{0, (T_i - \overline{T})\}$$

- Where the reference level, T, is usually 18°.
- Heating is generally required below the reference temperature and cooling above it.
- Cumulative number of degrees the average temperature was below the reference level

Rainfall Derivatives

Much less common than temperature-based derivatives.

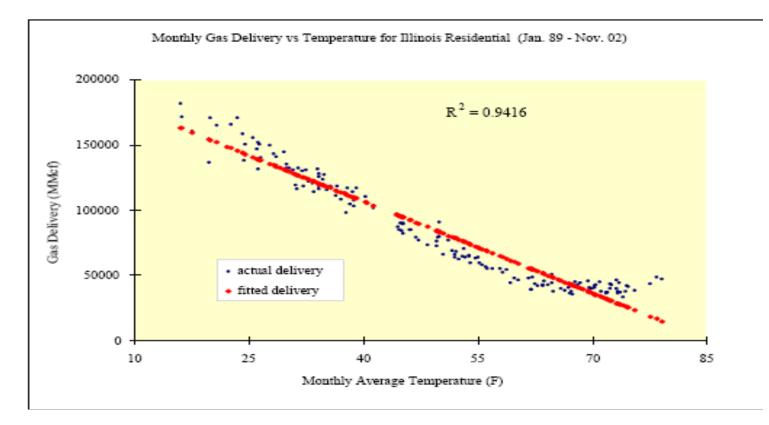
- > Market was born out of temperature exposure.
- 'Discreetness' of Rainfall
 - Basis risk greatest barrier to expansion.
 - Modelling difficulties.
- Lack of counter-parties only water supply companies as a possible partner.

Risk Management Applications

Energy / Utility Companies

- Sales are highly correlated with temperatures.
- Definition of HDD and CDD contracts is based on an energy companies exposure.
 - Heating/cooling reference level (18°)
 - Cumulative based underlying variable.
- > Enron
- Oil and gas pipeline manager.
- Used weather derivatives to reduce exposure to weather.
- Soon became a 'market-maker' on CME and others.

Hedging Temperature



Risk Management Applications

Construction

- Temperature:
 - Concrete curing (setting) is temperature dependent.
 - Productivity reduces at unusually high and low temperatures.
 - 'Stop work' laws.
- > Rainfall:
- Precipitation delays can often represent 10% of contract.
- Subsidence.
- Other exposures:
 - Snow fall.
 - Wind speed cranes and other heavy equipment.

Weather Derivatives vs. Insurance

Some key differences:

- Identifiable Loss: There is no need to prove that a loss has occurred. Reduces costs – claims assessors, lawyers etc.
- Moral Risk: Nearly entirely removed referenced to a transparent index
- Minimal Underwriting: Only counter-party risk requires investigation.
- Immediate Payout known magnitude.
- Basis risk

2. Pricing Principles

Pricing

Traditional Black-Scholes assumptions:

- A traded underlying asset that can be used to create a hedge, i.e. sold short.
- Log-normal distribution.

Other methods must be found for the pricing of these contracts:

- Alternative BS framework.
- Martingale approach.
- Numerical simulation.

Mean Reversion

Financial Services Forum

Expanding Our Horizons

- Weather variables do not rise or fall without bound
- Mean reversion strength depends on several factors most significantly latitude.

Mean-reversion component:

Institute of Actuaries of Australia

$$\frac{dX_t}{dt} = -\gamma . (X_t - \overline{X})$$

Ornstein-Uhlenbeck (OU) process:

$$dX_t = \gamma(\overline{X} - X_t).dt + \sigma.dW_t$$

Modified OU process:

$$dX_{t} = \left[\gamma(\overline{X} - X) + \frac{d\overline{X_{t}}}{dt}\right]dt + \sigma dW_{t}$$

Alternative Black-Scholes

➢ Futures Price:

$$Y_t = X_t \cdot e^{r(T-t)}$$

Process s.d.e:

$$dY_t = y[(\mu - r)dt + \sigma dW_t]$$

Modified Black-Scholes p.d.e:

$$\frac{dV_t}{dt} = rV - \frac{1}{2}\sigma^2 y^2 \frac{d^2V}{dy^2}$$

➢ Solution:

$$V(y,t) = BS(ye^{-r\tau}, t, r, \sigma)$$
$$= e^{-r\tau} .BS(y,t,0,\sigma)$$

Numerical Methods

'Burn' Analysis:

- No assumptions needed re: the process dynamics;
- No parameters to be estimated;
- Agreement on price.

Monte Carlo Simulations:

$$\mathbf{E}[f(X_{t})] = \frac{1}{N} \sum_{i=1}^{N} f(\overline{X}(t, \psi_{i}))$$

- Model dependant;
- Data intensive.

Financial Services Forum Expanding Our Horizons

3. Temperature Modelling and Derivative Pricing

Financial Services Forum Expanding Our Horizons

Data

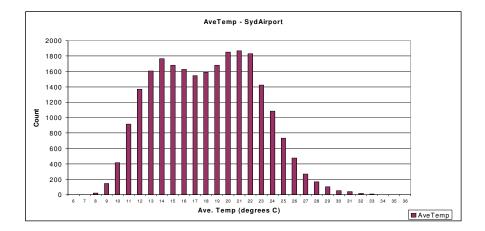
Australian Bureau of Meteorology (BOM)

- Sydney Airport. (Jan 1940 Dec 2005)
- Observatory Hill. (Jan 1940 Dec 2005)
- Prospect Dam. (Jan 1965 Dec 2005)

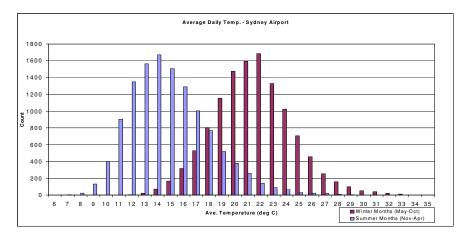
Missing data:

- ➤ Temperature Backup stations.
- Rainfall much more difficult. No accurate measure due to discreetness of rainfall.

Temperature Distributions



Bi-modal Distribution



Modelling Temperature

Steps:

- De-trend data;
- Choose functional form for seasonal fluctuations;
- Estimate the parameters, including mean-reversion;
- Simulate the process;
- Analyse residuals.

Long-term Trends

All temperature data sets revealed a significant positive slope

$$T_{Long} = a + b.t$$

$$T_{long} = a + bt + ct^2$$

- Time series over 70 years should de-trend with a quadratic function.
- Natural geological based heating + human induced global warming

Seasonal Trends

Fourier series to model seasonal component:

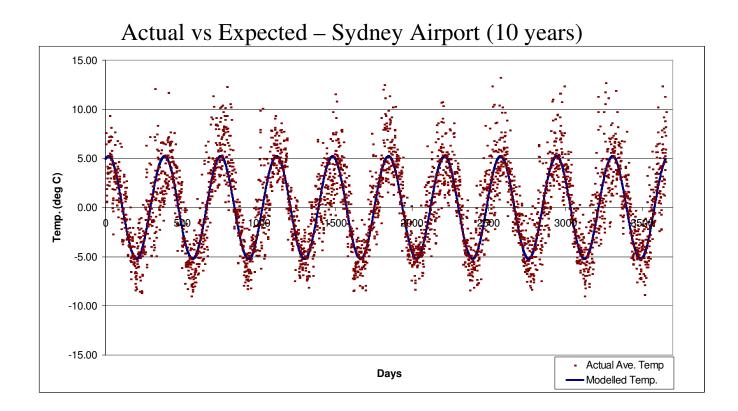
$$T_{Seasonal} = \mathcal{E}\alpha_0 + \sum_i \alpha_i . Sin(\gamma t + \phi) + \sum_i \beta_i Cos(\lambda t + \theta)$$

> A first order series is sufficient to capture seasonal pattern.

Combining this with the linear trend we obtain:

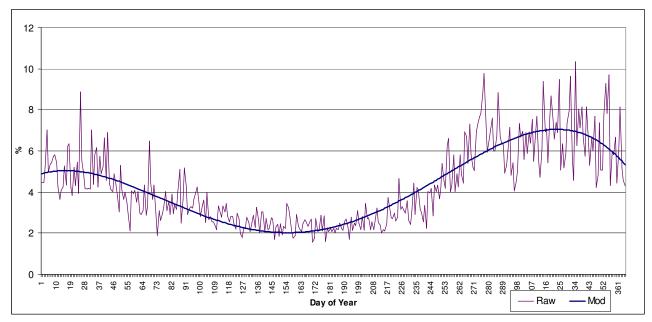
$$\overline{T} = a + b.t + \alpha.Sin(\gamma t + \phi) + \beta Cos(\lambda t + \theta)$$

Model Fit



Temperature Volatility

Daily Temperature Volatility – Sydney Airport (10 years)



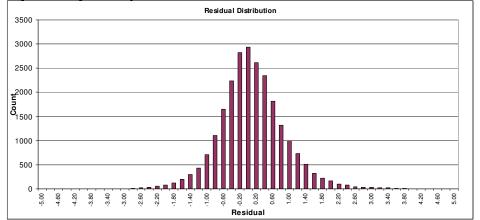
> Degree-4 polynomial fitted to volatility distribution.

Parameter estimation

• Parameter estimation – least squares

	Syd. Airport	Observatory	Prospect
а	16.925	17.434	17.26
b	6.30*10 ⁵	5.16*10 ⁵	4.91*10 ⁵
α	5.14	4.91	5.194
β	0.69	-0.20	0.986
φ	1.097	1.25	1.100
θ	0.97	1.10	0.675

• Residuals – Sydney Airport.



Pricing Example

• CDD option - January

Period:	January	
Measure:	Cumulative CDD	
Exercise Prices:	170 / 180 / 190 / 200 CDD's	
Tick:: \$100,000 /CDD		
Location: Sydney Airport (Kingsford Smith)		

- Pricing via:
 - 1. Normal approximation.
 - 2. 'Burn' analysis 66 years of data.
 - 3. Monte Carlo simulations

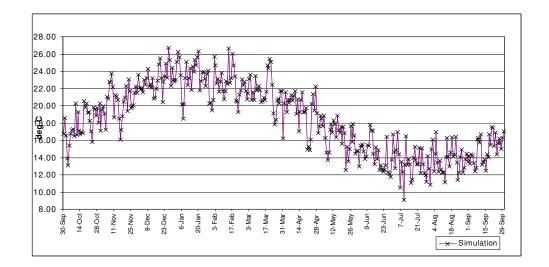
Monte Carlo

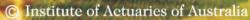
• Stochastic form:

$$T_{t} = \overline{T}_{t} + (T_{0} - \overline{T}_{o}).e^{-\gamma\Delta t} + \int_{s}^{t} e^{-\gamma\Delta t}.\sigma_{\tau} dW_{\tau}$$

• Euler approximation - discrete

$$T_{t+1} - T_t = \gamma \left(\overline{T} - T_y\right) + \frac{d\overline{T}_t}{dt} + \sigma.Z$$



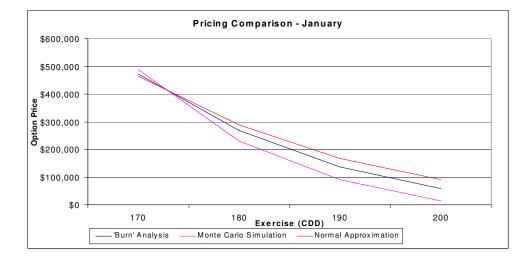


Financial Services Forum Expanding Our Horizons

Pricing Example

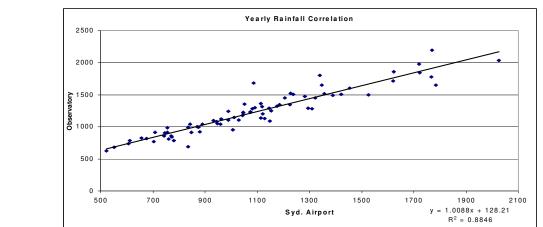
Sydney Airport January

January	Exercise (CDD)			
Method	170	180	190	200
'Burn' Analysis	\$473,306	\$268,763	\$137,865	\$59,582
Monte Carlo Simulation	\$489,044	\$230,479	\$90,848	\$13,990
Normal Approximation	\$463,670	\$288,627	\$167,993	\$91,012



4. Rainfall Modelling

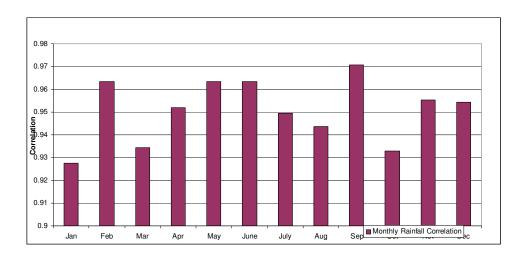
Rainfall Correlations



• Monthly

Annual

۲



Modelling Rainfall

Compound Model – size & frequency.

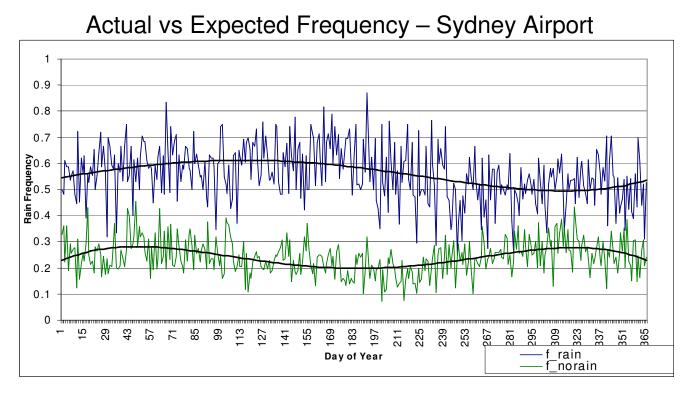
➢ Frequency: Markov Chain.

➢ Size: Gamma distribution (4 segments).

Transition probabilities:

	Rain	No rain
Rain	0.55	0.45
No rain	0.28	0.72

Frequency Simulation



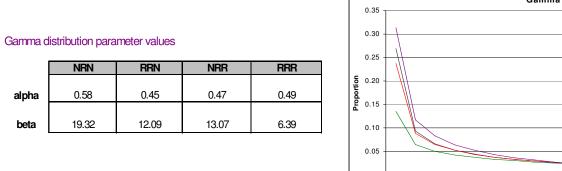
- Errors are greatest in winter i.e. errors not proportional.
- Clearly defined seasonal patterns.

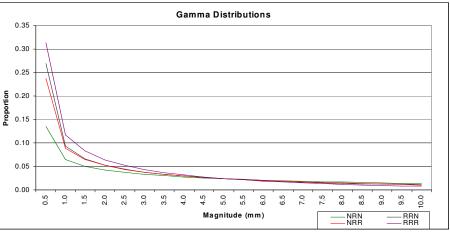
Magnitude

>4 segments conditional on t-1 and t+1.

		Rair	nt+1
Rain t-1		No	Yes
	Average	3.74	7.20
No	StdDev	6.21	12.23
NO	Max	79.0	182.1
	Min	0.1	0.2
	Average	6.43	13.89
Yes	StdDev	11.22	21.46
165	Max	132.6	216.2
	Min	0.2	0.2

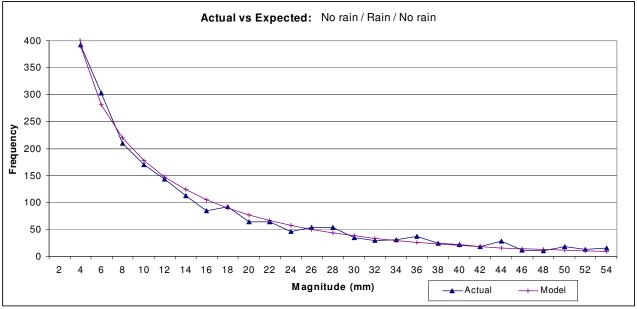
≻Fit 4 Gamma distributions





Magnitude

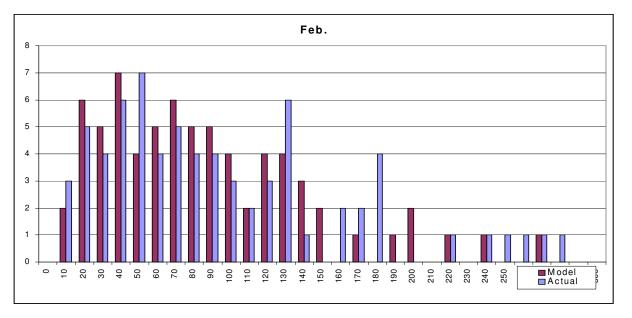
Actual vs Expected Magnitude – Sydney Airport



- Close Gaussian fit.
- Clearly defined seasonal patterns.

Simulation

Actual vs Expected Magnitude – Sydney Airport



Where to from here?

- New Markets:
 - Australian market practically non-existent agricultural based economy.
 - Must promote to seek out suitable counter-parties.
 - Improve product design reduce basis risk.
 - Centralised data recording methodologies Europe in particular.
- > New Interest:
 - Hedge funds attracted to immature market.
 - Diversification tool minimal correlation to debt and equity markets.
 - Weather-based indexed insurance contracts.