Adverse Selection Spirals

Professor Piet de Jong Shauna Ferris
Macquarie University

(C Institute of Actuaries of Australia

The Right to Underwrite?

- Sex Discrimination
- Unisex Pensions ? (USA, Australia, UK)
- MV insurance (Canada)
- HIV/ AIDS
- Genetic Testing
© Institute of Actuaries of Australia

In favour of Risk Classification

- "Actuarial Fairness"
- Preventing Adverse Selection Spirals
- Increasing Premiums
- Market Failure ?
© Institute of Actuaries of Australia

Objections to Risk Classification

- Someone always loses
- Is "actuarial fairness" really fair?
- MAP survey
- Australian survey on genetics
- More disadvantages for the disadvantaged ?
- Battered wives (USA)
- Credit Scoring (USA)

Institute of Actuaries of Australia

Financial Services Forum
 Expanding Our Horizons

Attitudes to Underwriting (Map 1990)

© Institute of Actuaries of Australia

Objections to Risk Classification

- Privacy Issues
- Aids / HIV and sexual preference
- Genetics and eugenics
- Public Health Issues
- Aids / HIV Controversy in UK
- Genetics
- Heterogeneity in Risk Groups
- Fairness to individuals ? Manhart decision

Institute of Actuaries of Australia

Financial Services Forum

Cost / Benefit Analysis

Q. If the government / public opinion imposes restrictions on the use of certain risk classification factors..... what will be the effect on premium rates and demand for insurance?

Will it be
a 5% premium increase ?
a 20% increase ?
or complete market breakdown ? (spiral)
Have insurers been "crying wolf "? (unisex, genetics)

Building a Model

Actuaries v. Economists ?

Heterogeneous Population
 R = Sum Insured purchased
 $X=$ Claim cost per \$1 SI

> Risk Group G
> $\mathrm{p}(\mathrm{g})=$ Proportion of Popn in Group g
> $\mathrm{r}(\mathrm{g})=$ Average Sum insured purchased
> $\mu(\mathrm{g})=$ Average Claim cost per $\$ 1 \mathrm{SI}$

Adverse Selection Losses

No Risk Classification : Premium per $\$ 1 \mathrm{SI}=\mathrm{E}(\mathrm{X})$
$E[$ Premium Income $]=E(R) E(X)$
$\mathrm{E}[$ Claim Outgo $]=\mathrm{E}(\mathrm{RX})$
$E[$ Losses $] \quad=E(R X)-E(R) E(X)$
$=\operatorname{Cov}(\mathrm{R}, \mathrm{X})$
$=\operatorname{Cov}[r(\mathrm{~g}), \mathrm{O}(\mathrm{g})]$
$=\operatorname{sd}[r(\mathrm{~g})]$ * $\operatorname{sd}[\mu(\mathrm{g})]^{*} \sigma$
© Institute of Actuaries of Australia

Financial Services Forum

Managing Adverse Selection

- Adverse Selection Losses depend on
- Variance of E[Claim Cost] by risk group
- Variance of E[Amounts Purchased] by risk group
- Correlation

Positive correlation between Risk and Sum insured means poor risks buy more insurance
> losses

Losses can be controlled by product design, financial underwriting, targetted marketing etc.

Life Insurance Correlation

NEGATIVECorrelation: People with high SI have lower mortality rates than average (> 100 years)
"Active Selection"
> Information asymmetry (+)
"Passive Selection"
$>$ Wealth Effect (-)
> Dependency Effect (-)
> Risk Aversion Effect (-)

Annuity Products

Positive Correlation : People with high annuity amounts have lower mortality
> Adverse selection losses

Practical Actuarial Solution:

- Break-even premium is calculated
- Use dollar-weighted mortality rates (1854?)
- pa(90) tables

BUT.......?

Is the Past a guide to the Future?

- Assumption: Relative Demand by different risk groups is stable
- BUT Demand changes when Market changes ...
- Tax
- Social Security
- Competing Products
- Risk Classification Structure

Market-sensitive demand

Assume Demand for group g varies with

- Expected claim cost for group g
- Premium rate π
γ is a price-sensitivity parameter

$$
r(g, \pi)=d_{g} \exp \left[1-\left(\frac{\pi}{\mu(g)}\right)^{\gamma}\right]
$$

Flexibility of demand curve

Equilibrium Conditions

Equilibrium occurs in a competitive market when the insurer breaks-even (including capital costs)

$$
\pi=\frac{\sum_{g} r(g, \pi) \mu(g) p(g)}{\sum_{g} r(g, \pi) p(g)}
$$

Chaotic Behavior : Tipping Points

Institute of Actuaries of Australia

Financial Services Forum

A Practical Example : UK Annuities

Step 1 : Fit model to current data to determine premium loading sensitivity parameters W_{0}

Effect of Unisex Premiums

Allow for Unisex Premium Requirement - Male and Female Rates Must be Equal Solve : Equilibrium Premium \& Demand

	Males	Females
Gender Premium Rate	14.88	16.98
Unisex Premium Rate	16.54	16.54
Change in Demand	-59%	$+22 \%$

© Institute of Actuaries of Australia

Financial Services Forum

Effects of Unisex Requirement

- Female premiums fall slightly
- More females enter the market (+22\%)
- Average female mortality rates increase as unhealthier women find it worthwhile to buy
- Male premiums rise significantly
- Many males drop out (-59\%)
- Average male mortality rates fall as unhealthier men no longer find it worthwhile to buy

More interesting questions

- Empirical evidence on adverse selection
- Impact of proxy variables
- Sum insured as a rating variable
- Effectiveness of SI restrictions on underwriting (as in UK equity market)
- Critique of economists' models

Adverse Selection Spirals

Professor Piet de Jong Shauna Ferris
Macquarie University

