

Adverse Selection Spirals

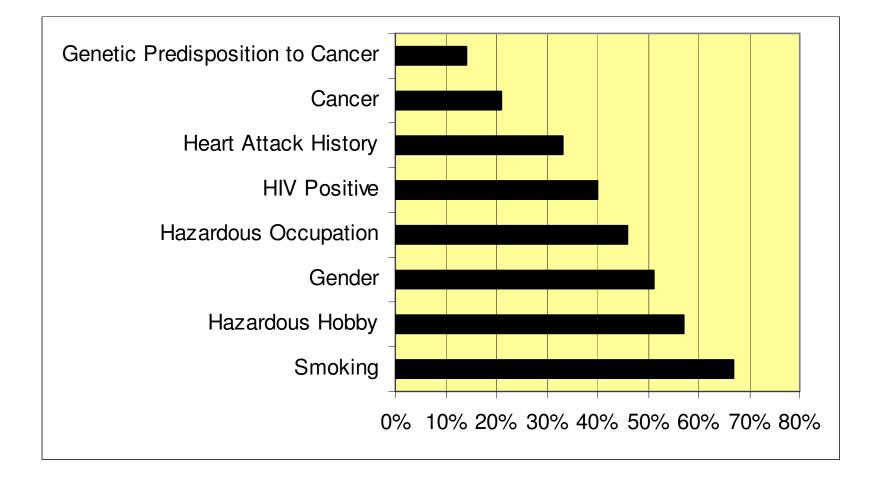
Professor Piet de Jong Shauna Ferris Macquarie University

The Right to Underwrite ?

- Sex Discrimination
 - Unisex Pensions ? (USA, Australia, UK)
 - MV insurance (Canada)
- HIV/ AIDS
- Genetic Testing

In favour of Risk Classification

- "Actuarial Fairness"
- Preventing Adverse Selection Spirals
 - Increasing Premiums
 - Market Failure ?



Objections to Risk Classification

- Someone always loses
- Is "actuarial fairness" really fair?
 - MAP survey
 - Australian survey on genetics
- More disadvantages for the disadvantaged ?
 - Battered wives (USA)
 - Credit Scoring (USA)

Attitudes to Underwriting (Map 1990)

Objections to Risk Classification

- Privacy Issues
 - Aids / HIV and sexual preference
 - Genetics and eugenics
- Public Health Issues
 - Aids / HIV Controversy in UK
 - Genetics
- Heterogeneity in Risk Groups
 - Fairness to individuals ? Manhart decision

Cost / Benefit Analysis

Q. If the government / public opinion imposes restrictions on the use of certain risk classification factors..... what will be the effect on premium rates and demand for insurance ?

Will it be

a 5% premium increase ? a 20% increase ? or complete market breakdown ? (spiral)

Have insurers been "crying wolf "? (unisex, genetics)

Building a Model

Actuaries v. Economists ?

<u>Heterogeneous Population</u> R = Sum Insured purchased X = Claim cost per \$1 SI

Risk Group G

p(g) = Proportion of Popn in Group g r(g) = Average Sum insured purchased $\mu(g) =$ Average Claim cost per \$1 SI

Adverse Selection Losses

No Risk Classification : Premium per I SI = E(X)

E[Premium Income] = E(R) E(X) E[Claim Outgo] = E(RX) E[Losses] = E(RX) - E(R)E(X) = Cov(R,X)= Cov[r(g), O(g)]

 $= sd[r(g)] * sd[\mu(g)] * \sigma$

Managing Adverse Selection

- Adverse Selection Losses depend on
 - Variance of E[Claim Cost] by risk group
 - Variance of E[Amounts Purchased] by risk group
 - Correlation

Positive correlation between Risk and Sum insured means poor risks buy more insurance > losses

Losses can be controlled by product design, financial underwriting, targetted marketing etc.

Life Insurance Correlation

<u>**NEGATIVE</u>** Correlation: People with high SI have lower mortality rates than average (> 100 years)</u>

"Active Selection"

> Information asymmetry (+)

"Passive Selection"

- > Wealth Effect (-)
- > Dependency Effect (-)
- > Risk Aversion Effect (-)

Annuity Products

Positive Correlation : People with high annuity amounts have lower mortality

> Adverse selection losses

Practical Actuarial Solution:

- Break-even premium is calculated
- Use dollar-weighted mortality rates (1854?)
- pa(90) tables

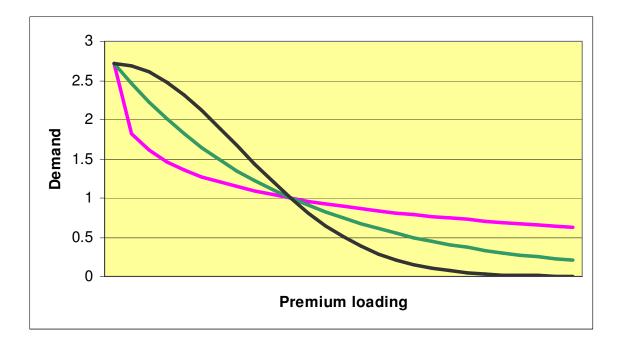
BUT.....?

Is the Past a guide to the Future ?

- <u>Assumption</u>: Relative Demand by different risk groups is stable
- BUT Demand changes when Market changes ...
 - Tax
 - Social Security
 - Competing Products
 - Risk Classification Structure

Market-sensitive demand

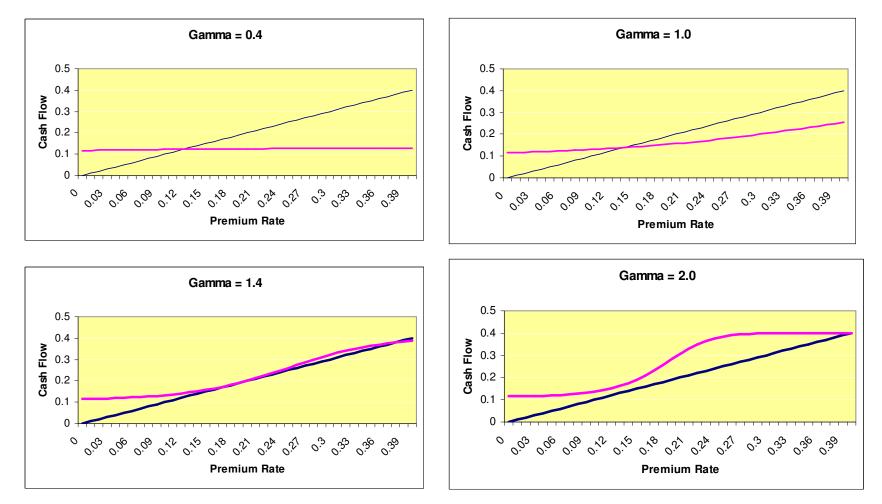
Assume Demand for group g varies with


- Expected claim cost for group g
- Premium rate π

 γ is a price-sensitivity parameter

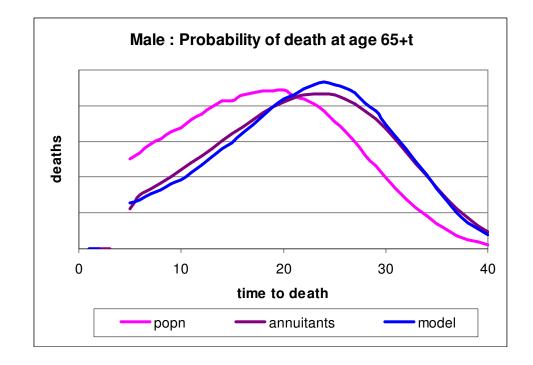
$$r(g,\pi) = d_g \exp\left[1 - \left(\frac{\pi}{\mu(g)}\right)^{\gamma}\right]$$

Flexibility of demand curve


Equilibrium Conditions

Equilibrium occurs in a competitive market when the insurer breaks-even (including capital costs)

$$\pi = \frac{\sum_{g} r(g,\pi) \mu(g) p(g)}{\sum_{g} r(g,\pi) p(g)}$$


Chaotic Behavior : Tipping Points

A Practical Example : UK Annuities

Step 1 : Fit model to current data to determine premium loading sensitivity parameters ^y_b

Effect of Unisex Premiums

Allow for Unisex Premium Requirement – Male and Female Rates Must be Equal Solve : Equilibrium Premium & Demand

	Males	Females
Gender Premium Rate	14.88	16.98
Unisex Premium Rate	16.54	16.54
Change in Demand	-59%	+22%

Effects of Unisex Requirement

- Female premiums fall slightly
- More females enter the market (+22%)
- Average female mortality rates increase as unhealthier women find it worthwhile to buy
- Male premiums rise significantly
- Many males drop out (-59%)
- Average male mortality rates fall as unhealthier men no longer find it worthwhile to buy

More interesting questions

- Empirical evidence on adverse selection
- Impact of proxy variables
- Sum insured as a rating variable
- Effectiveness of SI restrictions on underwriting (as in UK equity market)
- Critique of economists' models

Adverse Selection Spirals

Professor Piet de Jong Shauna Ferris Macquarie University