

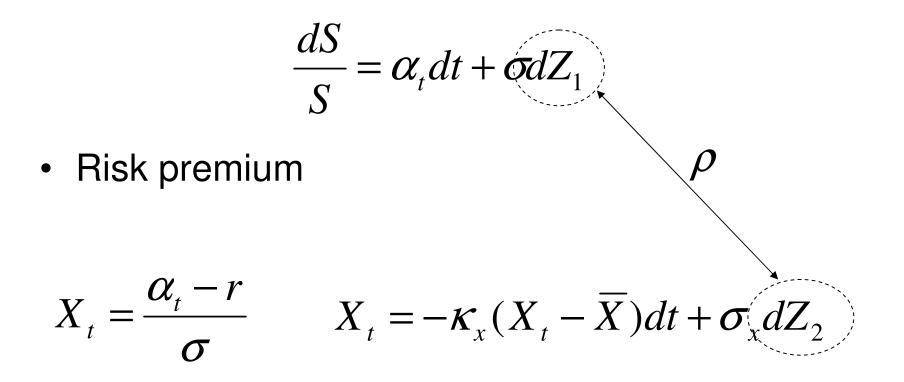
Living Life Optimally with a Mean-Reverting Price of Risk Dr. Sachi Purcal Hing Chan

Objective

- The objective of this paper was to analyse the behaviour of an investor when:
 - the risk premium is mean-reverting and is correlated with the risky asset.
 - In addition, event risks (jumps) exist in the risky asset.

© Institute of Actuaries of Australia

Financial Services Forum Expanding Our Horizons


Motivation

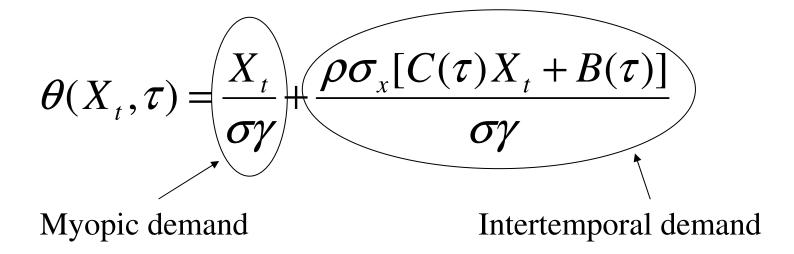
- Poterba and Summers (1988) have observed that serial negative correlation seems to exist for returns in the longer horizon in the US and 17 other countries, suggesting mean-reversion.
- It is well known that stock prices are susceptible to sudden changes.

Kim and Omberg

• Risky asset

Kim and Omberg

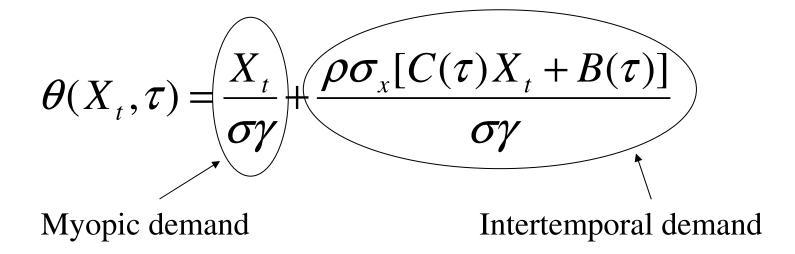
• The investor's utility


$$U(W) = \frac{W^{1-\gamma}}{1-\gamma}$$

• Objective of the investor is to maximise expected terminal-utility.

Analytic Solution

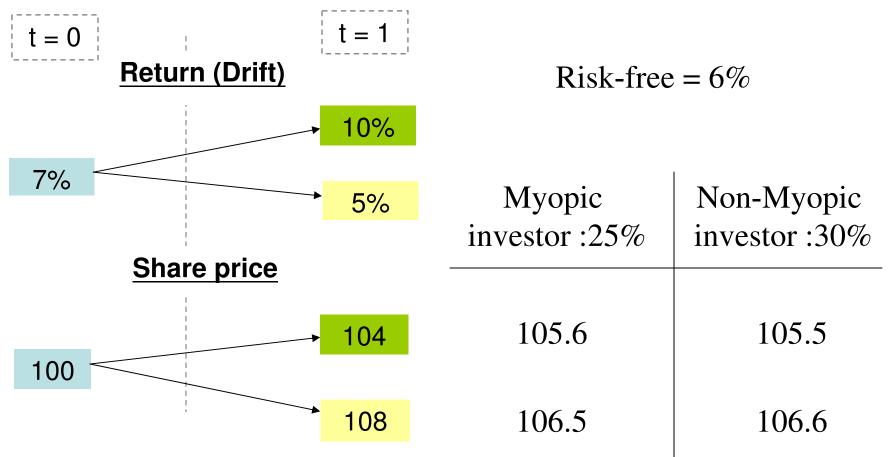
 Asset allocation can be broken up into two parts: myopic demand (Merton ratio) and intertemporal demand.


Myopic and Non-myopic behaviour

- An investor is said to be myopic if he/she only considers this current period when making investment decisions.
- Non-myopic behaviour, on the other hand, occurs when the investor considers the problem as a whole. Intertemporal demand is part of nonmyopic behaviour.

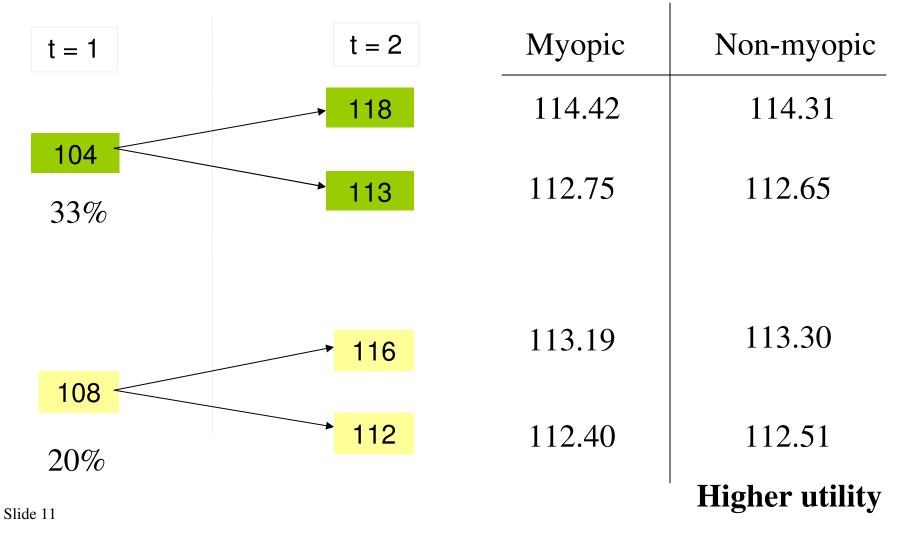
Analytic Solution

 Asset allocation can be broken up into two parts: myopic demand (Merton ratio) and intertemporal demand.


Example


• Suppose the correlation is negative and the investor has a risk aversion of 4.

Financial Services Forum Expanding Our Horizons


Example

Financial Services Forum Expanding Our Horizons

Example

Wu (2003)

• Wu considers the case when jump occurs.

$$\frac{dS}{S} = (\alpha_t - \lambda g)dt + \sigma dZ_1 + (e^q - 1)dQ$$

Jump Demand

• The asset allocation is:

$$\theta(X_t, \tau) = \frac{X_t}{\sigma \gamma} + \frac{\rho \sigma_x [C(\tau) X_t + B(\tau)]}{\sigma \gamma} + \frac{\lambda \hat{g}}{\sigma \gamma}$$

• Negative jumps reduce the asset allocation.

Wachter (2002)

- Considers consumption without jumps.
- Consumption is important because one of the main reasons we invest is to consume the wealth.

Weighted Average Formula

 Wachter shows that the asset allocation is actually the weighted average of future consumption value

Impact of consumption

• It follows that consumption actually impacts the asset allocation.

Model

• Risky asset

$$\frac{dS}{S} = (\alpha_t - \lambda g)dt + \sigma dZ_1 + (e^q - 1)dQ$$

• Risk premium

$$X_{t} = \frac{\alpha_{t} - \lambda g - r}{\sigma} \qquad X_{t} = -\kappa_{x} (X_{t} - \overline{X}) dt + \sigma_{x} dZ_{2}$$

Financial Services Forum Expanding Our Horizons

Model

• The investor's utility

$$U(W) = \frac{W^{1-\gamma}}{1-\gamma}$$

• Insurance premium

$$P_t = \mu_t (Z_t - W_t)$$

Model

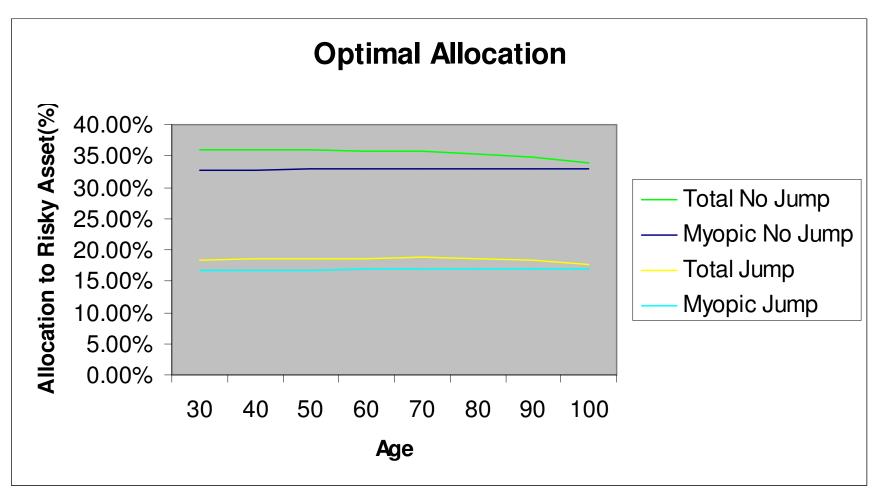
• Budget constraint

$$dW = rWdt + (\frac{dS}{S} - r)\theta Wdt - c_t dt - P_t dt$$

Objective function

• The objective of the investor is to maximise utility. This is mathematically given by:

$$J(W, X_t, t) = \max_{\theta, C} E_t \left\{ \int_t^{\omega} {}_T p_t \mu_{t+T} \left[\int_t^T U(C_s) ds + U(Z_T) \right] dT \right\}$$


Numerical method

• A numeric approach was used to solve this problem and the Japanese economy was used as parameters.

Financial Services Forum Expanding Our Horizons

Results

Results: Consumption

Age	Муоріс		Overall	
	C _{ms}	\boldsymbol{c}_m	Cs	С
30	0.1781	0.1746	0.1789	0.1749
40	0.2022	0.1989	0.2030	0.1992
50	0.2357	0.2326	0.2363	0.2329
60	0.2841	0.2813	0.2846	0.2815
70	0.3583	0.3558	0.3586	0.3561
80	0.4836	0.4817	0.4840	0.4819
90	0.7253	0.7245	0.7262	0.7246

Conclusion

 Investors will exploit the correlation between the risky asset and the risk premium to maximise their consumption utility.