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Stochastic modelling of economic risk and 
application to LMI reserving  
Abstract 

Lenders mortgage insurance (“LMI”) business is a unique class of insurance 
business in that it is more significantly affected, than other classes of 
insurance, by the economic environment. In recent years, LMI business has 
appeared very profitable as property prices have increased and the economy 
is strong. However, the area of greatest concern to an insurer (and regulator) 
is what will happen if economic circumstances change significantly, how 
likely that is to occur and consequently how much capital an insurer needs to 
cover such events.  

This paper will work through a deterministic approach to reserving for LMI 
business based on an approach developed by Dr G.C. Taylor in 1991. 

We then describe the derivation of a stochastic economic model, based on 
Cointegration techniques, that generates the key economic variables that 
affect LMI claims.  

We develop a stochastic approach to valuation of LMI via the combination of 
the deterministic valuation approach with the stochastic economic model. 
This allows us to derive a distribution of the unexpired risk liability.  

Finally, we derive an estimate of the risk margin for the premium liability 
using quantitative analysis of the economic risk component and qualitative 
estimates of other risk factors. 
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1 Introduction  

1.1 LMI business in Australia 

Typically with LMI business the insurer receives a single premium at the 
time of advance of the loan. The insurer undertakes to indemnify the Bank, 
up to a cap, for losses arising on default of such loans advanced by the Bank. 
The liability under this indemnity vests at the time of advance of the loan, but 
materialises in subsequent years.  

In August 2004, the Australian Prudential Regulatory Authority (“APRA”) 
released a discussion paper on proposed reforms to prudential supervision of 
lenders mortgage insurance, aiming to increase the protection provided to 
policyholders and address inconsistencies between the regulation of offshore 
and onshore LMI insurers and ADIs (Authorised Deposit-taking Institution).  

APRA noted in the August 2004 paper that “LMI insurers are mono-line 
insurers ... there are currently 15 LMI insurers operating in the Australian 
market. Of the 13 LMI insurers domiciled in Australia, six are captive 
insurers of ADIs. The remaining two are captive LMI insurers domiciled in 
Singapore and regulated by the Monetary Authority of Singapore. LMI 
insurers insure more than $200 billion worth of loans, including loans made 
and retained by ADIs and lenders that are not regulated by APRA, and 
securitised loans.” 

After initial feedback from the industry, a revised paper was issued in 
February 2005, outlining amendments to the proposed reforms. They have 
proposed 

• A prescriptive maximum event retention (“MER”) model, 

• Changes to the MER reporting  requirement; and 

• Clarification of the proposed definition of LMI insurers for 
qualifying capital concessions to ADI’s. 

They have also maintained the requirement for LMI insurers to operate as 
mono-line insurers.  

There is recognition of premium liabilities in the MER framework. However, 
the MER calculation is prescriptive and has no link with the insurance 
liability calculation or risk margin calculations. The calculation of the 
insurance liability and risk margins for LMI business are governed by 
GPS210.  We refer the interested reader to the APRA discussion papers for 
full details of these proposed reforms.  
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2 Deterministic Valuation  

2.1 Basic valuation approach 

At any particular date, the insurer is subject to a liability in respect of loans 
advanced in the past which will generate defaults, and thence claims, in the 
future. Such a liability is, in insurance terminology, in the nature of an 
unexpired risk reserve (“UXR”).  

There is generally a very short delay between incidence and reporting of 
claims. We do not consider liability for outstanding claims. 

The liability for unexpired risk as at the valuation date (say 30 June 2005) is 
estimated by means of projection of claims arising after that date but in 
respect of loans advanced prior to that date. We perform separate projections 
of the numbers of claims and the average sizes of these claims. These two 
projections are then combined to produce a projection of future claim 
payments. The total liability is the sum of claim payments emerging over all 
future years of exposure.  

Typically there is an allowance for expenses of administrating the claims and 
any recoveries collected from borrowers who default. The resulting total 
cashflows are then discounted to the valuation date.  

The Bank will usually have a number of different residential loan product 
types (e.g. low-doc loans, reverse mortgages etc) which can have 
significantly different borrower characteristics and default experience. For 
the purposes of this paper we have modelled a portfolio of standard loans.   

1991 model by Dr Taylor 

A 1991 paper by Dr G.C. Taylor detailed a sophisticated approach to 
modelling claim experience for mortgage insurance claims, in the context of 
market conditions at the time.  

The authors have utilised this model, or derivatives of it, for a number of 
years in analysing the performance of loan portfolios of a number of 
mortgage insurers and home lenders.  

The model derived by Taylor (1991) consists of two sub-models, for claim 
frequency and claim size respectively. It is described in brief below. Readers 
should refer to the original paper for full detail. 
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2.2 Claim frequency model  

2.2.1 Model formulation 

Claim frequency is assumed to be a function of some subset of the variables 
describing the characteristics of an individual loan (such as LVR) together 
with macroeconomic variables which can be reasonably considered to 
influence the claims process. 

This is carried out by fitting a generalised linear model (GLM) to the claim 
frequency.  Variables with most explanatory power were first incorporated in 
the model, and others tested for further explanatory power before being either 
accepted or rejected for inclusion. 

The following variables were statistically significant in explaining claim 
frequency: 

o development year 

o loan-to-valuation ratio (LVR) 

o dwelling type 

o home affordability 

o geographic area 

o property price growth. 

The following variables were investigated for possible inclusion in the model 
but rejected as having insufficient explanatory power: 

o loan band (either independently or correlated with dwelling type) 

o loan term 

o interest type 

o unemployment rate  

Property price growth, which includes the use of suburban property indices 
for metropolitan Sydney, has high predictive value. 
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2.2.2 Adopted model 

The adopted model of claim frequency is given by the following formula: 

Claim frequency 
in Development Year t        = EXP [A  
                                                                 + 
       logdy * B    
                                                                                                       + 
       Area factor 
     + 
       Dwelling Type Factor 
      + 
       log(LVR) * C 

      + 

        log(Home Affordability Factor)* D  
     + 

        log(Property Growth Factor)* E 

     + 

        Logexp] 

 

where 

LVR    = Loan to Valuation Ratio. 

Area Factor = derived from postcode of the 
property: 

Dwelling Type Factor = derived from dwelling type (eg 
House/Unit etc) 

Home Affordability Factor = (value of home affordability index at  
             middle of development year t-1) 
   / 
 (value of home affordability index at  
             middle of (year of advance - 1) 

Property Growth Factor = (value of property index at end of 
             development year t-1) 
   / 
             (value of property index at middle  
             of year of advance) 

A, B, C, D and E are constants (derived from the GLM fit) and 'logdy' is log 
of development year t.  

The adopted model implies that claim frequency (for this particular portfolio) 

• varies by development year in a manner similar to that suggested by 
one-way analysis; 



  6  

 

• is highly dependent on LVR; 

• varies by geographic area and dwelling type; 

• significantly depends on home affordability and (especially) growth 
in property prices; 

The 2 most significant explanatory variables are LVR and property growth. 

2.2.3 Model verification 

The normal tests of a GLM were carried out to verify the model.  

A number of complications arose including: 

• Significant changes in portfolio mix in the past  

• Significant changes in administrative practices including recording 
(and accuracy) of loan details. 

• Particularly favourable claims experience in recent years. 

A notable difficulty is the choice of time period over which to fit the model. 
We need to balance the need for a sufficient volume of data (to ensure 
statistical significance) with the continued relevance of the relationships 
(between variables). This is particularly important given recent favourable 
claims experience with this class of insurance.  

2.3 Average claim size model  

Average claim sizes are projected cell by cell, as was the case for numbers of 
claims.   

As was the case for claim frequency, a model is constructed by examining the 
possible explanatory power of loan characteristics and economic indicators.   

The final model expresses the average of the claim size as a function of: 

• development year,  

• size of loan advanced, and  

• geographic state of the property.   

Other characteristics which might be considered as having potential 
predictive power, such as LVR and geographic area, did not prove 
statistically significant. 
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2.4 Total Claim Amount Projection 

Projected Payments 

Sections 2.2 and 2.3 described how future numbers of claims and average 
claim sizes were projected cell by cell.  These two projections have been used 
to estimate future amounts of claims.  This quantity has been estimated for 
each cell as: 

Amount of claims =  

Number of loans exposed 

* estimated claim frequency (in the relevant cell) 

* estimated average claim size (in that cell). 

2.5 Projection assumptions  

The next stage in the process (after the model fit) is to set our projection 
assumptions, ie 

• Price and wage inflation 

• Mortgage interest rates 

• Future property growth 

• Investment return 

• Discharge rates 

• Expense and recovery assumptions 

Price and wage inflation: 

The home affordability index depends on movements in prices and wages, (as 
well as mortgage rates and tax rates). The future rates of change in price 
inflation and wage inflation are set by reference to a number of sources, for 
example: 

• The insurer’s economic forecasts 

• Various bank forecasts,  

• State and Federal treasury forecasts 

• Boutique economic forecasters (e.g. Access Economics, BIS 
Shrapnel) 
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The key assumption is the gap between wage and price inflation ie real 
increases in earnings. A positive gap, in the absence of change in the other 
inputs, will lead to a natural increase in home affordability over time.  

Mortgage rates: 

This leads us to mortgage rates. Increases in mortgage rates naturally lead to 
a reduction in home affordability (and thus increased likelihood of a claim).  

The major sources of forecasts of future mortgage rates are similar to those 
for inflation. However a number of forecasts focus on the short term (ie next 
12-18 months). The key area of exposure for LMI business is generally the 
first 5 years of development. As with most economic assumptions there will 
necessarily be an element of actuarial judgement required. 

Property growth: 

There are varying sources of information regarding past property growth. 
Unfortunately these varying sources can often indicate widely different 
movements in prices (often due to varying composition of the index, 
information sources and sampling methods). Generally these indices are 
broadly consistent over the medium term (say yearly intervals). For the 
purposes of this analysis we have used the Residex series for Sydney and 
ABS for the other states.  

We note that the Reserve Bank of Australia (“RBA”) has recently developed 
a new series, called a composition adjusted series (as outlined in their 
statement on monetary policy dated 8 August 2005). We have not had the 
opportunity to fit a model based on this series and we believe use of this new 
series is unlikely to have a major impact on the projections.  

There are few forecasters willing to project future property growth. A notable 
exception is BIS Shrapnel. However these forecasts often assume a set 
sequence of events for the next few years and which may not necessarily be a 
mean (or median) forecast.  

Investment return: 

Future investment return ie for determining discount rates will need to be 
consistent with the accounting standards. 

The Australian accounting standard AASB 1023, prescribes that this rate of 
return "shall be determined by reference to market-determined risk-adjusted 
rates of return appropriate to the insurer" (Paragraph 14). 

The quoted requirement of the Accounting Standard has two aspects, namely 
the "market-determined" and "risk adjusted" aspects.  These are dealt with in 
turn. 
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It may be demonstrated that the market value of a portfolio of liabilities 
(known with certainty) is equal to the present value of those liabilities, 
discounted at risk-free spot yields at the valuation date. 

Any risk adjustment required by the accounting standard should recognise the 
risk (ie uncertainty) associated with the amount and incidence of liabilities.  
Modern finance theory demonstrates that this risk adjustment should be 
related to the correlation between movements in claims liabilities and stock 
market prices.  For this portfolio of liabilities it is expected that the 
correlation is negative and therefore, the risk adjustment should consist of a 
shift of the discount rates downward from the risk-free spot yields mentioned 
above.  However, as it is extremely problematic to determine the extent of 
any such shift, no adjustment has been made. This is an area for further work. 
We are aware of the use of stochastic discount factors for stochastic valuation 
models. This is also an area for further work.  

We have thus set our assumed future investment returns based on the risk free 
yield curve at the valuation date.  

Discharge rates: 

Future turnover in the loan portfolio is incorporated by assuming a future rate 
of discharge.  

This is a very important assumption as it determines how exposure will 
reduce over time (aside from term expiry and/or a claim). This can vary quite 
significantly between products and across the economic cycle. Analysis 
indicated that the rate of discharge is influenced by property price movements 
(among other things).  

We have developed a GLM model of discharge. However, for the purposes of 
brevity, we have assumed a constant rate of discharge of 10% pa. 

Expense and recovery assumptions: 

These are set as appropriate to the portfolio being valued.  

2.6 Stress testing  

The 2 main approaches to stress testing are sensitivity analysis and scenario 
analysis 

Sensitivity analysis 

Sensitivity analysis is an assumptions based approach whereby we recalculate 
the liability estimate after changing specific assumption(s). The difference in 
value indicates the impact of the assumption and its relative importance. 
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It is apparent from the form of model of claim frequency adopted that 
frequency is extremely sensitive to economic conditions.  As either 
borrowers' disposable incomes reduce or property values decline (or even fail 
to increase at the expected rate), claim frequency responds with a sharp 
increase. 

We would typically consider a number of assumption changes where we 
would apply a proportionate shift in the assumption. Naturally one attempts 
to take a realistic view of the possible assumption changes.  

There are a number of limitations with this approach, namely: 

• There is no allowance for the likelihood or otherwise of these events,  

• There is no allowance for the interrelationship of these economic 
variables (and/or events of interest) 

• There is no allowance for the timing of such changes, the simplest 
approach is to shift all future values for the chosen assumption. Such 
events may be more likely to occur, for example in 2 years time.  

• There is no allowance for the likely path that these economic 
variables might follow over time (such as an interest rate rise, 
followed by inflation reducing etc). 

This led us to the development of a dynamic economic model that attempts to 
overcome these shortcomings. It is still however, a model and thus will itself 
imply certain assumptions about behaviour of economic variables.  

Scenario analysis 

Scenario analysis could involve replacing a whole set of economic 
assumptions by that of a particular forecaster.  

Another approach to scenario analysis would be to modify the exposure 
period used for fitting the claim frequency model (such as excluding the 
favourable experience of recent years). This could introduce an unintended 
bias into the model which itself would need to be assessed and quantified.  

2.7 Risk margins  

Sources of variation 

For LMI liabilities uncertainty needs to be considered as the product of: 

Systemic causes, in particular  

• those related to economic outcomes such as interest rates and 
property price movements.  Dependency on economic outcomes 
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causes most of the systemic uncertainty in the liability, and results in 
serial correlation across exposure years (cyclicality). 
 
Property price growth is especially significant because of its potential 
dual effect of reducing risk for existing exposures (by reducing the 
effective LVR of the loan at time of default) while increasing risk for 
current and future loan advances (through increasing loan to income 
ratios). 

other systemic effects such as restatement of data through correction of 
errors. 

Independent causes, for example random fluctuations in the past claims 
experience result in uncertainty in the parameters fitted to the model.  These 
effects can be estimated with reasonable accuracy through examination of the 
model fit. 

Quantifying the variation 

Ideally we would quantify both sources of variation using statistical analysis. 
However, when we are using a deterministic approach to valuing UXR for 
LMI business we usually need to make some subjective assessments of these 
sources of variation.  

Typically the approach would be to assume some distributional form (such as 
lognormal) for each source of variation and then estimate a coefficient of 
variation (CoV). We would then aggregate up to a total CoV allowing for any 
correlation of this variation. There are 2 major shortcomings with approach, 
namely: 

• the true distribution may not be as assumed, and  

• the CoV estimates could be significantly incorrect   

Traditional statistical approaches to determining parameter risk (such as 
bootstrapping) are not appropriate due to the predominance of economic risk.  

The deterministic approach is often quite subjective (and uninformative) and 
this led us to develop a stochastic approach to determining risk margins.  

The first stage of this process is the development of a stochastic economic 
model which we now discuss. 
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3 Stochastic economic model  

3.1 Introduction 

This section describes the development of a model for house prices in Greater 
Sydney. The model relies heavily on the use of time series techniques in its 
specification and estimation, with particular attention being given to the non-
stationary nature of the underlying economic variables. It is the absence of 
any tendency to revert to a long term mean or trend that suggests these 
variables are generated by non-stationary stochastic processes and follow 
stochastic trends. 

Recent developments in econometric modelling (see Royal Swedish 
Academy of Science (2003)) have allowed for the effects of non-stationarity 
to be incorporated in the analysis of time series. In particular, Engle and 
Granger (1987) demonstrate that common stochastic trends may exist 
between non-stationary economic variables implying that linear combinations 
of these series are stationary. That is, the series are said to be ‘cointegrated’ 
and may be represented in ‘error correction form’ according to the Granger 
Representation Theorem.  

Section 3.2 provides an overview of the model, including its statistical and 
economic foundations. Section 3.3 discusses the estimation of the model 
using data over the last 20 years.  Section 3.4 illustrates the Monte Carlo 
method and provides some analysis of the resultant simulations.  

3.2 Model Overview 

House prices are assumed to be generated according to supply and demand 
outcomes, which are illustrated in Figure1. This representation of the market 
for housing is necessarily stylised due to both limited data availability and the 
practical difficulties associated with modelling a more comprehensive 
system. 

Figure 1. The Model. [Legend: + = positive relationship, - = negative relationship and || = lagged 
relationship.] 

 

Price inflation
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Real wage cost 
index

(LRWCI)

Real house prices 
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Real mortgage rate 
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-

 



  13  

 

The supply of housing, to the right of Figure 1, is captured exclusively by the 
number of building approvals, which is the Reserve Bank of Australia’s 
(RBA) preferred measure of investment in new dwelling construction. The 
hypothesised interaction is fairly intuitive: an increase in real house price 
levels will stimulate new dwelling construction causing a rise in building 
approvals, which, after a time lag, will result in housing supply growth and 
with other things being equal, a fall in real prices.  

The demand for housing, to the left of Figure 1, is generated via a 
combination of real wage levels, real mortgage rates and inflation. As the 
diagram suggests, the interaction of these variables is largely circular in 
nature. An increase in real wage levels stimulates aggregate demand 
(including demand for housing), which will place upwards pressure on house 
prices. If this situation is sustained sufficiently long to outstrip aggregate 
supply, inflation will rise above the RBA’s target rate, leading to a rise in 
official interest rates with a knock-on effect to the real mortgage rate. The 
relationship between real mortgage rates and real house prices will be 
negative due to the increased cost of borrowing. A more detailed discussion 
of the determination of house prices may be found in section III.1 of the 
PricewaterhouseCoopers UK Economic Outlook (October 1999).  

A Vector Error Correction Model (VECM) was used to capture these 
hypothesised economic features. The advantages of a VECM in this context 
are twofold: 

• Long-run equilibrium effects and short-run dynamics are identified 
explicitly; and 

• All economic series are determined simultaneously on the basis of 
the equilibrium relationship and their own (combined) history; 

To identify the long-run equilibrium, the VECM takes advantage of any 
cointegrating relationships that may exist between the non-stationary 
economic series (see Section 3.3) used in its estimation. Statistically, these 
cointegrating relationships represent linear combinations of the (non-
stationary) series that are, in fact, stationary as described in Engle and 
Granger (1987). When appropriately restricted, these linear combinations 
may be interpreted in terms of hypothesised economic relationships, such as 
that discussed above (see, for example, Johansen and Juselius (1990)).   
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3.3 Model Estimation 

3.3.1 Data 

Quarterly data covering the period March 1985 to December 2004 was 
gathered or constructed, as described in Table 1. 

 

Table 1. Data sources and descriptions 

Name Description Source/Transformation 
HPI Sydney Residex index Residex 

RHPI Real house prices 
[(HPIt/HPIt-1)/(CPIt/CPIt-1)]×RHPIt-1 ; RHPI0 = 
100.00 

LRHPI Natural logarithm of RHPI LN(RHPI) 
WCI NSW wage cost index Australian Bureau of Statistics  

RWCI Real NSW wage cost index 
[(WCIt/WCIt-1)/(CPIt/CPIt-1)] ×RWCIt-1 ; RWCI0 
= 100.00 

LRWCI Natural logarithm of RWCI LN(RWCI) 
MR Variable mortgage rate RBA Bulletin Statistics 
C_MR Continuous mortgage rate 100×LN(1+ (MR/100)) 
RMR Real C_MR C_MR - 400*LN(CPIt/CPIt-1) 
CPI Sydney Consumer Price Index ABS Cat. 64010.0 Table 1b 
DLCPI Continuous CPI inflation rate [LN(CPIt/CPIt-1) - 1]*400 
BA NSW building approvals ABS Cat. 8731.0 Table 1a 
LBA Natural logarithm of BA LN(BA) 
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3.3.2 Data Testing 

The highlighted series in Table 2 were used for the estimation of the VECM. 
As discussed in Section 3.2, these series must be non-stationary if a long-run 
relationship is to be identified. The usual test for non-stationarity is the 
Augmented Dickey Fuller (1979) (ADF) test with a null hypothesis of non-
stationarity. The results are presented in Table 2. 

 
Table 2. Augmented Dickey Fuller testing. A more detailed discussion of this 
testing is provided in the Appendix. 

Series ADF specification Test statistic 
95% Critical 

value 
LRHPI Trend; Lag 2 -3.2251 -3.4659
LRWCI Trend; Lag 0 -3.1227 -3.4659
RMR Intercept; Lag 2 -2.3278 -2.8976
DLCPI Intercept; Lag 2 -2.1454 -2.8976
LBA Intercept; Lag 0 -3.3963 -2.8976
∆LRHPI Intercept; Lag 0 -5.0112 -2.8981
∆LRWCI Intercept; Lag 0 -7.3213 -2.8981
∆RMR Intercept; Lag 1 -11.7523 -2.8981
∆DLCPI Intercept; Lag 0 -10.9587 -2.8981
∆LBA Intercept; Lag 0 -9.9348 -2.8981

 

The ADF regressions (refer Appendices) test for the presence of unit roots 
causing non-stationarity. If x unit roots are present, the series is said to be 
integrated of order x, or I(x). Differencing an I(x) series x times will result in 
stationarity. The VECM requires the series to be I(1), that is, the null should 
be accepted for the series in levels and rejected for the series in differences. 
Table 2 shows this to be the case for all series except LBA, which appears to 
be stationary in levels. However, given that LBA is non-stationary at the 1% 
level, we consider this series to be appropriate for inclusion in the VECM.  
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3.3.3 Model Specification 

The VECM to be fitted to the data is given in Equation 1 below.  

tt

p

i
ititt DXXX εαβµ +Ψ+∆Γ++=∆ ∑

−

=
−−

1

1
1

`   (1) 

Where, 
 Xt = {LRHPI, LRWCI, RMR, DLCPI, LBA}; 

         t = September 2000 
        Otherwise 

εt is the vector of residuals at time t 
µ, α, β, Гi, Ψ are parameter matrices 

 p is the lag order 
 

Points to note include: 

• Dt is a dummy variable included to remove the once-off inflationary 
effects associated with the introduction of the Goods and Services 
Tax (GST); 

• The number of columns (i.e. rank, r) of β determines the number of 
cointegrating relationships present in the VECM; 

• The parameter α can be interpreted as the speed of adjustment to the 
equilibrium relationship[s] contained in β; 

• To ensure consistent and unbiased estimation, it is necessary for the 
εt’s to possess multivariate normal distributions that are serially 
independent. 

We also note that a VECM represents a restricted Vector Autoregressive 
(VAR) model of the I(1) model variables in levels. This is an extension (from 
two dimensions) of the Granger Representation Theorem (see Engle and 
Granger (1987)).  

⎩
⎨
⎧

=
0
1

tD
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Lag Order Selection 

One method of selecting the lag order, p, of the VECM in (1) is to choose 
that value which maximises the Schwarz Bayesian Criterion (SBC). Table 3 
presents the results. 

  

Table 3. SBC for various lag orders. Note that the SBC was calculated on the 
basis of an unrestricted Vector Autoregressive (VAR) model for the series in 
levels.   

Lag Order (p) SBC 
0 -463.101 
1 245.0582 
2 259.4177 
3 228.8291 
4 203.4578 
5 165.6378 
6 134.3764 
7 98.4643 
 8 83.8400 
9 90.8773 
10 87.4972 
11 111.8566 
12 217.5289 

 

According to Table 3, the appropriate lag order is two; however, estimating 
(1) with p equal to two results in serial correlation in the residuals for LRHPI. 
With this in mind, and noting that understating the lag order is far more 
deleterious than overstating it in the presence of a sufficiently large number 
of data points, a lag order of four was selected.   

Number of Cointegrating Relationships 

There are three widely used statistical methods1 for determining the number 
of cointegrating relationships (i.e. the rank, r, of β) among a collection of I(1) 
variables: 

• Johansen’s Maximal Eigenvalue Test  
• Johansen’s Trace Test   
• Information criteria  

                                                      
1 Another method that we do not discuss here is the DOLS method as 
described in Stock and Watson (1993) 
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For details of the first two tests we refer the reader to Johansen (1991). 

The results for the series LRHPI, LRWCI, RMR, DLCPI and LBA are 
presented in Table 4. 

 

Table 4. Beta rank testing. LL = Log Likelihood; AIC = Akaike Information 
Criterion; SBC = Schwarz Bayesian Criterion; HQC = Hannan-Quinn Criterion. 

Johansen’s Maximal Eigenvalue Test 

Null Alternative Statistic 
95% Critical 

Value 
90%Critical 

Value 
r = 0 r = 1 32.9911 33.64 31.02
r<= 1 r = 2 18.9924 27.42 24.99
r<= 2 r = 3 16.0845 21.12 19.02
r<= 3 r = 4 7.5648 14.88 12.98
r<= 4 r = 5 2.3764 8.07 6.50

 
Johansen’s Trace Test 

Null Alternative Statistic 
95% Critical 

Value 
90%Critical 

Value 
r = 0 r>= 1 78.0092 70.49 66.23
r<= 1 r>= 2 45.0181 48.88 45.70
r<= 2 r>= 3 26.0257 31.54 28.78
r<= 3 r>= 4 9.9412 17.86 15.75
r<= 4 r = 5 2.3764 8.07 6.50

 
Information Criteria 

Rank 
Maximized 

LL 
AIC SBC HQC 

r = 0 413.4288 328.4288 229.3727 288.8412
r = 1 429.9244 335.9244 226.3799 292.1451
r = 2 439.4206 338.4206 220.7185 291.3812
r = 3 447.4628 341.4628 217.9339 292.0947
r = 4 451.2452 342.2452 215.2203 291.4799
r = 5 452.4334 342.4334 214.2431 291.2024

 

At the 95% confidence level, the Trace test suggests a single cointegrating 
relationship while the Maximal Eigenvalue test supports the null hypothesis 
of no cointegration. The SBC also supports this null hypothesis, while the 
AIC and HQC imply five and one cointegrating relationships respectively. 
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In order to reconcile these disparate results, we note that the conclusion of the 
Maximal Eigenvalue test is marginal; that is, while it suggests no 
cointegration is present at the 95% confidence level, it supports a single 
cointegrating vector at the 90% confidence level. In addition, the presence of 
five cointegrating vectors, as given by the AIC, implies each of the modelled 
series are stationary, which contradicts the testing carried out in Section 
3.3.2. 

In light of the above, a beta rank of r = 1 seems appropriate. Moreover, this 
result is consistent with the discussion in Section 3.2, which alluded to a 
single long run equilibrium relationship existing between the series.  

 

Residual Testing 

A requirement of the maximum likelihood estimation procedure we have 
adopted (see Johansen (1991)) is that the residuals of (1) are normally 
distributed and independent (or at least uncorrelated) through time2. 
Assuming beta takes the form given in the third column of Table 6, the 
results of tests to this effect are as reported in Table 5. 

 

Table 5. Residual testing. CV = Critical Value. Note the null hypotheses are the absence of 
serial correlation, the presence of normality, and the absence of heteroskedasticity respectively.  

Serial Correlation3 Normality4 Heteroskedasticity5  
Statistic p-value Statistic p-value Statistic p-value 

LRHPI 3.6034 46.2% 6.6895 3.5% 8.0602 0.5%
LRWCI 1.4460 83.6% 0.4323 80.6% 0.5710 45.0%
RMR 15.0464 0.5% 9.5052 0.9% 0.0015 96.9%
DLCPI 13.6016 0.9% 8.2208 1.6% 0.0063 93.7%
LBA 6.2059 18.4% 8.0919 1.7% 0.1815 67.0%

 

The p-values represent the probability that the relevant test statistic is greater 
than or equal to its observed value assuming the null hypothesis is true; that 
is, the p-value can be thought of as the probability that the null hypothesis is 
true. Therefore, a p-value below a specified significance level will lead to a 
rejection of the null hypothesis.  

                                                      
2 We note that if the residuals are both normally distributed and serially 
uncorrelated, they are also serially independent. 
3 Godfrey’s Lagrange Multiplier test for autocorrelation 
4 Jarque-Bera test for normality 
5 Lagrange Multiplier type test based on the regression of squared residuals 
on squared fitted values 
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At a 1% significance level, the results in Table 5 suggest that:  

• The residuals of the equation for RMR are serially correlated and 
non-normal; 

• The residuals of the equation for DLCPI are serially correlated; and 

• The variance of the residuals of the equation for LRHPI is dependent 
on the values of one or more model variables (i.e. exhibits 
heteroskedasticity). 

From a purely statistical point-of-view, the results of the above testing would 
appear to invalidate the estimation procedure. However, we must bear in 
mind that alternative specifications of the testing may lead to different, but 
equally applicable, conclusions. This is especially relevant here as the 
conclusions we have drawn are marginal at the 1% significance level.  In 
particular,  

• The Durbin-Watson test for serial correlation yields insignificant (at 
the 1% level) results at lags 1 through 12 for both RMR and DLCPI 
residuals; 

• The Anderson-Darling goodness-of-fit test reveals the RMR 
residuals to be normally distributed; and 

• The Engle Lagrange Multiplier test for Autoregressive Conditional 
Heteroskedasticity (ARCH) effects produces insignificant (at the 1% 
level) results at lags 1 through12 for the LRHPI residuals.  

In light of these results, we conclude that the residuals are multivariate 
normal white noise.  

 

3.3.4 The long-run equilibrium relationship 

Although (1) specifies the error correction equations of each of the five 
endogenous model variables, we will concentrate our discussion on the error 
correction equation of LRHPI, which is given by:    
 

        (2) 
 

Where,  
 Yt = {LRWCI, RMR, DLCPI, LBA};  
 µ1, α1, Ψ1, εt

1 = the first elements of µ, α, Ψ and εt in (1) 
Гi

1 = the first row of Гi  in (1) 
θ = the final four elements of β in (1) 
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The presence of a cointegrating relationship between the model variables 
implies a long-run relationship towards which the variables continually re-
adjust subject to short-term temporary disturbances. This relationship is 
captured by the cointegrating vector β`Xt = (LRHPIt-1 – θYt-1). We note that 
coefficient of unity on LRHPIt-1 is a restriction we apply in order to identify 
the beta vector, which is not, in general, unique. The advantage of this 
particular identifying restriction is that we can interpret the coefficients 
contained in θ as elasticities of the real house price with respect to each of the 
model variables contained in Yt-1. In addition, α1 can be interpreted as the 
speed at which any disequilibrium in the long-run level of log real house 
prices is being adjusted for. Given the specification of (2), this speed is 
measured in terms of the proportional change (i.e. continuous growth rate) in 
LRHPI in a quarter. The estimation results for (2) are presented in Table 6.  

 

Table 6. Estimation results of error correction equation for LRHPI.  

Parameter Identified
Estimate 

Over-identified 
Estimate 

θLRWCI -1.4326 0.8000 
θRMR -0.3979 -0.3367 
θDLCPI 0.3154 0.3248 
θLBA 1.3588 1.5136 
α1 -0.0152 -0.0164 
R2 0.5869 0.5871 

 

The ‘identified’ parameter estimates in Table 6 are derived by applying only 
the identifying restriction to the beta vector. However, these estimates 
suggest that the elasticity of log real house price with respect to log real wage 
cost is negative, which is a counter-intuitive result. Moreover, very little 
credence can be given to this estimate from a statistical point-of-view given 
its large standard error (11.3090). Therefore, an over-identifying restriction is 
applied, which fixed the elasticity at 0.80006. This means that a 1% increase 
in real wage cost would, in the long-run, result in a 0.8% increase in real 
house prices. The intuition behind this restriction is that we might expect 
there to be a one-to-one relationship between real household disposable 
income and real house prices, and a less than one-to-one relationship between 
real wage cost and real household disposable income7. With this in mind, an 
elasticity of 0.8% seems appropriate. 

                                                      
6 This restriction is non-significant, with the likelihood ratio test yielding a p-
value of 89.1%. 
7 Given the reliance of the Home Affordability Index (HAI) on the wage cost 
index, we chose not to model household disposable income directly. 
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Conversely, a 1% increase in the level of building approvals is associated 
with a 1.51% increase in real house prices in the long run. This result is 
surprising as we originally posited that increased building approvals would 
eventually lead to a fall in real house prices due to growth in the supply of 
housing stock (see Figure 1). However, since the cointegrating relationship 
represents contemporaneous equilibrium levels of each of the model variables 
and, historically, increased building approvals have been associated with 
strong growth in real house prices, this conclusion is not entirely unexpected.  

The elasticities of real house prices with respect to real mortgage rates and 
consumer price inflation are, respectively, -33% and 32%8. For example, a 
1% increase in real mortgage rates over the course of a quarter will result in a 
33% fall in real house prices. Clearly, this is an unrealistic outcome. 
However, as the nominal mortgage rate historically has been stable compared 
to the inflation rate, a fall in the real mortgage rate is strongly correlated to a 
rise in the inflation rate. Therefore, noting the positive inflation rate elasticity 
of real house prices (i.e. 32%), the long run net effect of a 1% increase in real 
mortgage rates on real house prices, for example, is likely to be small. 
Notwithstanding the magnitude of these elasticities, their signs are broadly 
sensible. That is, an increase in the inflation rate may be viewed by 
prospective home owners as a sign of expected growth in the inflation rate, 
therefore encouraging investment in housing as an inflation hedge. This is at 
odds with the relationship presented in Figure 1, which suggests the inflation 
rate does not directly impact on house prices in the long run. Conversely, the 
negative impact of increased real mortgage rates on real house prices is as 
expected.  

Finally, the over-identified estimate of α1 reveals the speed of adjustment to 
the long run relationship to be relatively slow, with real house price 
adjustments to equilibrium occurring at a rate of 1.6% per quarter. That is, all 
things being equal, we would expect house prices to reach equilibrium after 
approximately 15 years. We can extend this result to incorporate the speed at 
which the entire system (i.e. not just log real house prices) adjusts to 
equilibrium by examining the ‘persistence profile’. This profile illustrates 
how the impact of a system wide shock to the cointegrating vector (i.e. β`Xt) 
resolves over time. The shock is defined by the covariance matrix of εt in (1), 
and scaled to equal unity on impact.  

                                                      
8 As we are modelling real mortgage rates and consumer price inflation as 
percentages, the parameter estimates (θRMR and θDLCPI) are decimals not 
percentages. 
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Figure 2. Persistence profile of cointegrating vector to system-wide shock 
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Therefore, the entire system reaches equilibrium after around 4 years. This is 
substantially quicker than real house prices alone due to the allowance of 
interaction effects between all of the model variables in the long-run 
adjustment process. Nonetheless, this remains a comparatively lengthy 
‘equilibrating timeframe’ (see Pesaran and Shin (1996)).  

 

3.3.5 Impulse Response Analysis 

The primary limitation of analysing the long-run relationship in isolation is 
that it fails to capture the complex short-run interactions that occur within the 
VECM. Therefore, we derive impulse response functions, which show how a 
model variable of interest responds, over time, to a single standard error 
shock in another model variable. Again, we will focus our discussion on real 
house prices. Figure 3 through Figure 6 show the impulse responses of 
LRHPI to shocks in each of the five model variables as a function of the 
projection quarter. 

Figure 3. Impulse response of LRHPI to a 1 s.e. shock to LRHPI. 
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Figure 4. Impulse response of LRHPI to a 1 s.e. shock to RMR. 
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Figure 5. Impulse response of LRHPI to a 1 s.e. shock to LRWCI. 
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Figure 6. Impulse response of LRHPI to a 1 s.e. shock to LBA. 
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Figure 7. Impulse response of LRHPI to a 1 s.e. shock to DLCPI. 
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The first point to note is that in each case the long-run level LRHPI is 
different (in percentage terms) from what it would have been had the relevant 
shock not occurred. This is due to the non-stationary nature of the model 
variables in general and LRHPI in particular, that is, shocks have a persistent 
effect. This should be compared to the persistence profile of the stationary 
cointegrating vector (i.e. β`Xt), which converges to zero (see Figure 2). 

The results presented in Figure 3, Figure 4, Figure 6 and Figure 7 are largely 
as expected given the discussion of the previous section. That is, the level of 
real house prices changes in a direction consistent with the underlying shocks 
subject to some short-term (< 2 years) equilibrating effects. For example, an 
upwards shock in real mortgage rates leads to a long-run fall in the real house 
prices, reaching a local minima after six quarters (see Figure 4). The 
subsequent recovery from quarter six to eleven and eventual fall from quarter 
11 onwards can be attributed, firstly, to a fall in real interest rates (below their 
shocked levels) and, secondly, a longer term reduction in building approvals 
and inflation. These effects are illustrated in the impulse responses (not 
shown here) of these variables (i.e. RMR, LBA and DLCPI) to the shock to 
real mortgage rates.  

The situation depicted in Figure 5 is not as expected, however. Intuitively, we 
would expect an upwards shock to real wage cost and thus, indirectly, real 
household disposal income to stimulate demand for housing and thus raise 
prices in real terms. Rather, we see the opposite occurring. The ostensible 
reason for this is that the upwards shock to real wage cost causes a 
corresponding increase in real mortgage rates, which leads to a scenario 
similar to that illustrated in Figure 4. However, the fall in real house prices is 
less severe due to the offsetting effect of increased real wages.  
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3.4 Simulation 

The method of simulation is based on the VECM presented in (1) with some 
adjustments to reflect recent market conditions9. For each projection quarter 
(t: t œ {1, 2…n}), m independent random drawings from εt were taken. In 
accordance with results from the residual testing carried out in Section 3.3.3,          
was taken to be a set of independent multivariate normal random vectors.  

Given that the frequency of claims in the LMI business is most strongly 
dependent on the growth rate of nominal house prices10, we deal exclusively 
with these simulations. Figure 8 presents a selection of percentiles and 
sample simulations of the quarterly nominal growth rate over 40 projection 
quarters. The most recent historical quarterly growth rates are also provided.  

 

Figure 8. Quarterly growth rates in nominal house prices in Greater Sydney 

 

 

                                                      
9 In particular, these adjustments relate to the covariance matrix εt and current 
expectations of the long-run growth rates of model variables. 
10 Nominal house prices were derived by combing the inflation rate and real 
house price levels, which are both direct outputs of the model. 
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Figure 8 is useful insofar as it offers a means of superficially analysing 
whether the simulations are plausible realisations of the growth rate. 
However, it does not offer any insight into whether the model is capable of 
generating extreme outcomes that are likely to have a significant impact on 
the claim experience, and therefore solvency, of the LMI business. In 
particular, the insurer will want to know the probability of realising several 
consecutive quarters of negative nominal house price growth as well as the 
average growth rate should this occur.  

To this end, Figure 9 presents a histogram providing the empirical 
probabilities associated with maximum run lengths of negative nominal 
house prices growth. So, for example, the probability that there will be no 
more than 2 consecutive quarters of negative house price growth in 40 
projection quarters is 20%. Figure 10 presents the average negative growth 
rate associated with these runs, with each dot representing a single 
simulation. Therefore, continuing the example, simulations possessing a 
maximum run length of 2 have mean negative growth rates ranging from -
3.9% to -0.05%.  

 

Figure 9. Distribution of maximum run lengths of quarterly negative nominal 
house price growth 
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Figure 10. Average negative quarterly nominal house price growth rate 
associated with the maximum run lengths in Figure 9 

 

The above analysis illustrates the model’s potential to generate extreme 
outcomes in the housing market. For example, in excess of 20 consecutive 
quarters of negative nominal growth rates with a mean of -3.7% per quarter is 
possible albeit highly unlikely. Therefore, we can have confidence that the 
empirical distribution of nominal house price growth adequately captures the 
inherent uncertainty in the market. 

3.5 Conclusions 

The above analysis and discussion has demonstrated that house prices in 
Greater Sydney can be adequately modelled using a VECM.  This conclusion 
is subject to some caveats, however. 

• Firstly, in the absence of further testing we can not be sure that a 
VECM ‘Data Generation Process’ (DGP) is the closest econometric 
approximation to the true DGP.  

• Secondly, the short-term component of the model is heavily over-
parameterised, that is, a large proportion of the parameter estimates 
are statistically insignificant.  

• Thirdly, while the model residuals could be classified as multivariate 
normal white noise at the 1% significance level, not all can be 
classified as white noise at the 5% significance level. This suggests 
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that some of the parameter estimates may be biased and the model 
may fail to capture significant non-linear effects.  

Therefore, this model, like any other, must be applied with care.  

We do however believe that this model is sufficiently robust to be used in 
assessing economic risk for LMI business and risk margins in general under 
APRA requirements.  
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4 Stochastic Valuation  

4.1 Reserving  

4.1.1 Deterministic valuation 

In performing the deterministic valuation we have set the relevant projection 
assumptions equal to the median results from the stochastic economic model.  

For all other assumptions we have made a specific deterministic assumption 
i.e. discharge rate, investment return, claims admin expenses and recoveries. 
The relevant assumptions feed into the claim frequency and claim size model 
which we then use to project future claims costs (as per Section 2.4).  

This then provides us with the deterministic liability. This is the deterministic 
estimate from a standard deterministic valuation. However we will need to 
make a distinction between this and the median (or mean) result from the 
stochastic valuation. We will discuss this further below.  

The methodology we adopt to calculate the deterministic liability estimate is 
considered to be equivalent to a single simulation, albeit with the simulated 
economic assumptions set equal to the median results (from the stochastic 
economic model).  

4.1.2 Stochastic valuation 

In order to run a stochastic valuation (say with 1,000 trials) we follow an 
iterative process whereby we simply repeat the deterministic calculation 
1,000 times. For each calculation we use the projection assumptions coming 
from a single simulation from the stochastic economic model.  

To recap, the simulated values that we use from the stochastic economic 
model are, namely: 

• Mortgage rates 

• Price inflation 

• Wage inflation.  

• House price movements 

Note that the first 3 series are used to construct the HAI series.  

When we have completed all our iterations we can then summarise the 
liability in a number of ways, usually by state, LVR, YOE and YOA. 



  31  

 

In adopting this approach we are making a number of simplifying 
assumptions, namely: 

• Discount factors are unchanged across all simulations. One would 
expect that the more significant property price reductions would be 
occurring along with upwards movements in interest rates. The use of 
a constant discount factor ignores any possible link. We have noted 
that there is literature in the area of stochastic discount factors. For 
the purposes of this paper we have ignored this issue but we have 
highlighted this as an area for further work. 

• That the linear relationships underpinning the GLM will be 
unchanged under all simulations (including the extreme ones). Some 
of these relationships may break down in such extreme 
circumstances. However the intent of this work was the estimation of 
a premium liability at the 75th percentile and we have not placed 
significant reliance on the upper percentiles (such as 90th and above). 

• Fixed rate of discharge. As we noted earlier, analysis has indicated 
that the rate of discharge is affected by movements in the property 
price (along with other factors). Some initial modelling indicates that 
this will increase the variability in the estimate. However, one has to 
consider how this will interact with any change in the rate of 
discharge and how rapid or otherwise the exposure runs off. This is 
an area for further work. 

Sample output 

The graph below illustrates the run-off in exposure and projected claims, for 
all years of advance. This is for the run-off exposure for an illustrative 
insurer, MortCo as at 30 June 2005. 

Discharge Model (Deterministic)
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Comments are as follows: 
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• We note that there is a steady run-off in exposure which is consistent 
with a fixed rate of discharge. 

• We note that there is a slight ‘hump’ in projected claims at the 2007 
YOE. This is due to the projected experience for the most recent 
years of advance. We discuss this further below.  

The graph below illustrates projected claims and projected discounted 
payments, for all years of advance. 

Discharge Model (Deterministic)
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Comments are as follows: 

• There is no significant difference in the shape of the projected claims 
and the projected payments. This is due to a relatively stable 
discounted average claim size. 

The graph below illustrates, for a single simulation, how simulated property 
growth rates affect the liability for the latest year of advance 
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Comments are as follows: 

• As expected when the property prices fall, there is a corresponding 
increase in the liability. 

• The impact of property price movements, on the liability, at later 
stages is lessened due to the run off in exposure. 

The graph below illustrates the projected liability for the 2005 year of 
advance. We have plotted the deterministic estimate, mean, median and 75th 
percentile of the liability for each YOE up to 2014. 

Projected Liability by YOE (YOA=2005)
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Comments are as follows: 

• We note that the deterministic liability peaks at the 2008 year of 
exposure. This is development year 3. This is consistent with the past 
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claims experience as noted in Section 2.2. We also noted earlier that 
the GLM formula includes development year as an explanatory 
variable.  

• It is interesting that the shape of the projected liability is largely 
maintained when we plot the median, mean and 75th percentile.  
However when we move to the 75th percentile the peak moves to the 
2009 year of exposure.  

The graph below illustrates the projected liability for the 2003 year of 
advance using an approach consistent with the preceding graph 

Projected Liability by YOE (YOA=2003)
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Comments are as follows: 

• This is a similar picture to that in the preceding graph, except we now 
have 2 more years of development. However in this case the peak 
occurs at the same YOE for all (including the 75th percentile).  

The graph below illustrates the projected liability for all years of advance, 
again using a consistent approach to the preceding graphs 
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Projected Liability by YOE (all YOA)
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Comments are as follows: 

• We note that this consists of a mix of years of advance and has a 
similar shape to that of the 2005 year of advance. This is not 
surprising as the recent years of advance (at least for this particular 
portfolio) make up the vast majority of the liability.  

4.2 Stress testing and risk margins  

4.2.1 Stress testing 

As noted earlier, there are 2 main approaches to stress testing a deterministic 
valuation, namely sensitivity analysis and scenario analysis.  

When we perform a stochastic valuation, sensitivity analysis is no longer 
appropriate. All feasible assumption values should be captured in the 
simulations. Any interrelationship between the economic variables and their 
co-dependence should also be captured by the stochastic economic model.  

With a stochastic valuation, possible scenario analysis includes: 

• Refitting the economic model over a shorter time period.  

• Running the economic model from a different starting point 

• Refitting the GLM excluding recent experience  

Adopting any of the above scenarios may alter the mean estimate of the 
stochastic valuation. However this may not significantly alter the relationship 
between the 75th percentile and the mean and any associated risk margins. 
This is an area for further work. 
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4.2.2 Risk Margins  

The use of a stochastic model allows us to generate results based on a range 
of outcomes for significant economic variables. This assists in the 
determination of the major systemic risk factors affecting the liabilities. 

The stochastic model shows that many of the outcomes are skewed towards 
the downside.  This is a result of a number of factors: 

• The underlying nature of insurance is that the insurer always picks up 
extreme downside risk, eg. claim numbers can never improve by 
more than 100% of expected levels, but can deteriorate indefinitely. 

• Economic outcomes are themselves skewed to some extent (eg. 
interest rates can rise more than they can fall). 

• Credit risk has threshold effects (eg. the property value on 
realisation must fall below the outstanding loan amount) which can 
rapidly accumulate once the conditions are right (eg. a rise in interest 
rates producing an increase in loan arrears and a fall in property 
prices). 

• Cyclicality in economic outcomes introduces serial correlation in 
year-to-year outcomes (eg. property price can remain depressed for 
several years) which have a progressive cumulative effect on 
insurance outcomes. 

• The key relationships are very sensitive to changes in independent 
variables due to non-linear effects.  For example, risk increases 
exponentially with loan LVR.  This introduces further asymmetry in 
outcomes. 

We now discuss the results for the illustrative insurer MortCo. 

The modelling showed that the median outcome from the stochastic model 
lies between 5-10% above that produced from the deterministic model.  We 
suspect this result is dependent on the current benign point in the economic 
cycle. This means that more of the stochastic economic scenarios increase 
claim numbers rather than reducing them, thus raising the median outcome 
relative to that produced by a single scenario (based on the median of the 
simulated economic variables). 

The modelling showed that the mean lies, as expected, above the median.  
The margin was quite large (in the order of 10-20%), and indicative of a high 
degree of skewness.  This is confirmed when the actual distribution is 
examined (see below). 
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In total the mean (central estimate) of the stochastic model is significantly 
higher than the deterministic estimate (within the range 15-30%). This raises 
an interesting issue; that is, when valuing a liability which has significant 
positive skewness, is a deterministic central estimate truly the mean (i.e. does 
the valuation model properly allow for the skewness)? This problem is 
overcome when we use a stochastic model as we can easily calculate the 
mean of the liability 

The 75th percentile result is a further 15-25% above the mean.  

The 75th percentile is equivalent to a log-normal coefficient of variation of 
between 25-35%.  However, the CoV-equivalent of the 90th percentile and the 
95th percentile were significantly different to that at the 75th percentile. This 
indicates that the distribution is not log-normal in nature, but more highly-
skewed. 

Overall risk margins 

In order to produce an overall risk margin at the 75th percentile outcome, the 
results of the stochastic model need to be adjusted for sources of uncertainty 
other than from future economic factors.  

We have allowed for these by adopting coefficients of variation for each of 
the substantial factors, as follows: 

• Data errors and limitations  

• Exposure – i.e. projected exposure across various key risk factors  

• Model fit error and future process uncertainty  
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Each of these effects is taken to be log-normally distributed, and to be 
independent from the others, and from systemic economic risk.    

These other sources of uncertainty only added a minimal amount to the total 
CoV. The vast majority of uncertainty, for LMI business, arises from 
systemic economic risk.   

For this particular portfolio, the 75th percentile produced a risk margin below 
the APRA minimum (of half of the overall CoV).   

Therefore the provision will include a risk margin based on half the COV. 

4.3 Conclusion  

The above analysis and discussion has demonstrated a number of key points 
which we summarise below: 

• A stochastic valuation model can be used to determine the central 
estimate and the risk margin. This ensures a consistent approach. 

• The stochastic approach will more accurately capture the inherent 
skewness (non-lognormal) in the liability for this class of business. 

• The use of lognormal assumption may not be appropriate and may 
lead to misleading results 

• A deterministic approach to valuing this insurance liability may not 
appropriately capture the skewness and the deterministic estimate 
may thus be significantly different from the true mean of the 
liability.  

• Systemic economic risk accounts for the vast majority of uncertainty 
for this class of business 



  39  

 

5 Further work  

The preceding analysis and discussion highlighted a number of areas for 
further work. We summarise these areas below: 

• Discount factors are unchanged across all simulations. One would 
expect that the more significant property price reductions would be 
occurring along with upwards movements in interest rates. 
Deterministic discount factors, as used here, ignore any possible link 
and should be replaced with stochastic discount factors 

• Stochastic discharge factors. As we noted earlier, analysis has 
indicated that the rate of discharge is affected by movements in the 
property price (along with other factors). Some initial modelling 
indicates that this will increase the variability in the estimate. 
However, one has to consider how this will interact with any change 
in the rate of discharge and how rapid or otherwise the exposure runs 
off.  

• Default model: We have modelled the numbers of claims with 
respect to loans exposed. Before a claim occurs there are a number of 
preceding stages including the loan falling into arrears and any 
subsequent default. Given a reasonable volume of data we would 
develop a probability of default (PD) model and then a loss given 
default model (LGD) using, for example, Markov chain techniques. 

• Loan characteristic model dynamics. Another unknown is the 
behavioural aspect of borrowers (and subsequent repayments and/or 
default/claims). Certain borrowers may be more likely to churn than 
others and preliminary analysis has identified certain predictors of 
this behaviour. This is an area for further work. 

• Asset – liability modelling: The use of a stochastic economic model 
to estimate the liability can be extended to simulate returns on the 
assets and thus assist the insurer in assessing capital requirements.  

 



  40  

 

6 Acknowledgements and references  

Acknowledgements: 

We are indebted to Conor O’Dowd, Sylvia Wong and Ajay Singh for the 
contribution they have made to the evolution of this paper through 
discussion, debate and challenge. While acknowledging the great benefit we 
have obtained from this dialogue, any errors or omissions are entirely those 
of the authors alone. 

We would also like to acknowledge St George Insurance Pte Ltd and in 
particular Mr Peter Morgan and the credit risk team for their assistance in this 
project.  

References: 

• Abelson, P., R. Joyuex, G. Milunovich and D. Chung (2004), “House 
prices in Australia: 1970 to 2003 facts and explanations”, Macquarie 
Economics Research Papers 

• Ayat, L. and P. Burridge (2000), “Unit root tests in the presence of 
uncertainty about the non-stochastic trend”, Journal of Econometrics, 
95(1), 71-96 

• Chen, M. and K. Patel (1998), “House price dynamics and granger 
causality: an analysis of Taipei new dwelling market”, Journal of the 
Asian Real Estate Society, 1(1), 101-126 

• Dickey, D. and W. Fuller (1979), “Distribution of the estimators for 
autoregressive time series with a unit root”, Journal of the American 
Statistical Association, 74, 427-431 

• Engle, R.F. and C.W.J Granger, 1987, “Co-integration and error 
correction: Representation, estimation and testing”, Econometrica, 
55, 251-276  

• Garratt, A., Lee, K., Pesaran, M. H. and Shin, Y. (2001), “A Long 
Run Structural Macroeconometric Model of the UK”, The Economic 
Journal , 113(487), 412-455 

• Johansen, S. (1991), ”Estimation and hypothesis testing of 
cointegrating vectors in Gaussian vector autoregressive models”, 
Econometrics, 59, 1551-80 

• Johansen, S. and K. Juselius (1990),  “Maximum likelihood 
estimation and inference on cointegration – with applications to the 



  41  

 

demand for money”, Oxford Bulletin of Economics and Statistics, 
52(2) 

• Ley S., O’Dowd C., (1997),  “The changing face of home lending”, 
Proceedings of the 11th General Insurance Seminar, November 1997.  

• PricewaterhouseCoopers UK Economic Outlook (October 1999) 

• Sherris, M., Tedesco, L. and Zehnwirth, B. (1997), “Stochastic 
Investment Models: Unit Roots, Cointegration, State Space and 
GARCH Models for Australian data”, ARCH, 1997.1, 95-144.  

• Taylor G., (1991a), “Modelling mortgage insurance claims 
experience: A Case Study”, A Coopers and Lybrand research report 

• Taylor G., (1991b), “Economic and Statistical Aspects of Mortgage 
Insurance Claims Experience”, A Coopers and Lybrand research 
report 

• Taylor G., (1993), “The incidence of risk under credit insurance”, A 
Coopers and Lybrand research report 

• Taylor G., (1994), “Modelling mortgage insurance claims 
experience: A Case Study”, ASTIN Bulletin , 24(1) 1994 

• Royal Swedish Academy of Science Advanced information on the 
Bank of Sweden Prize in Economic Sciences in Memory of Alfred 
Nobel, 8. October, 2003. “Time Series Econometrics: Cointegration 
and Autoregressive Conditional Heteroscedasticity (Nobel Laureates 
in Economics, 2003, Robert F. Engle and Clive W. J. Granger)” 



  42  

 

Appendices  

 

A. Augmented Dickey Fuller Testing 

The Augmented Dickey Fuller regression tests for the presence of random 
walk effects – and thus a unit root causing non-stationarity – by performing 
the following regressions on the univariate series Xt: 
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Where, 

 δt = IID(0,σ2) 

 ρ, γ0, γ1, and the ai’s are constants to be estimated 

(Note that the autoregressive terms contained in the summation operator are 
designed to remove serial correlation from the εt’s.) 

Depending on the values of γ0 and γ1, the null hypothesis is that the series is a 
random walk, a random walk with drift, or a random walk with a linear trend.  
In each case the null is equivalent to ρ = 0, which is tested for using the t 
ratio applied to special critical values.  

In order to select the appropriate form of the ADF regression (i.e. nature of 
deterministic component and lag length, q), we apply the following testing 
strategy adapted from Ayat and Burridge (2000).  

Step 1 

Perform preliminary unit root testing invariant to a linear trend under the 
null; i.e. test for ρ = 0 under the third specification in (A.1), where the lag 
length q is selected according to the minimum Schwarz Bayesian Information 
Criteria (SBC) in conjunction with Durbin’s t test for first order 
autocorrelation of residuals.  

(A.1) 
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Step 2a 

If the unit root is not rejected at Step 1, then provisionally maintain the null 
hypothesis (ρ = 0) and estimate: 
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0 +∆+=∆ ∑
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−β     (A.2) 

Then test for the null that γ 1 = 0 in (A.1) using the t ratio on β0 referred to 
standard tables.  

Step 2b 

If the unit root is rejected at Step 1, then test for γ 1 = 0 using the t ratio on γ 1 
– based on an estimation of the third specification in (A.1) – referred to 
standard tables. 

Step 3a 

If γ 1 = 0 is rejected at Step 2, then stop. (The unit root test carried out in Step 
1 contains the ‘correct’ deterministic component.) 

Step 3b 

If γ 1 = 0 is not rejected at Step 2, perform a provisional unit root test 
invariant to the mean under the null; i.e. test for ρ = 0 under the second 
specification in (A.1), where the lag length q is again selected according to 
the minimum SBC in conjunction with Durbin’s t test.  

Step 4a 

If a unit root is rejected at Step 3b, then stop. 

Step 4b 

If the unit root is not rejected at Step 3b, test the magnitude of the initial 
observation, Z0, relative to the increments in Z using the following test ratio 
referred to N(0,1): 

( )∑ ∆
=

− 21
0

tZT

Z
z      (A.3) 

Where, T = number of observations. 

Step 5a 
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If z differs significantly from 0 in Step 4b, then stop. 

Step 5b 

If the null of z = 0 is accepted in Step 4b, then perform a unit root test that is 
not invariant to the mean under the null; i.e. test for ρ = 0 under the first 
specification in (1), where the lag length q is again selected according to the 
minimum SBC in conjunction with Durbin’s t test.  

 

 




