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Optimal Groups using the Akaike Information Criterion 

 
 
1. Abstract 
 
In any initial data analysis, it is necessary to gain an understanding of the data at a 
basic level. What is there, what isn’t, what idiosyncrasies arise from the insurer’s 
processing of the data, is the data in an appropriate form for modeling? 
 
A good starting point is to construct histograms of the data. The histograms are 
constructed from raw data. The most common question asked when constructing 
histograms is “How many bins should I use”. Through the use of the Akaike 
Information Criterion we will show how an optimal number of bins is calculated and 
in turn use this approach to estimate an optimal number of homogenous groupings in 
attempts to classify rating variable categories in a pricing exercise. The basic idea for 
the method is obtained from Sakamoto(1985) & later by Taylor (1987). 
 
Keywords: bins, optimal groupings, histogram, pricing, Akaike Information Criterion 
 
2. Introduction 
 
Following the work of Sakamoto(1985), the Akaike Information Criterion(AIC) is a 
basis of comparison and selection among several models. The AIC was introduced by 
Akaike (1973). In his paper Akaike showed the importance of the Kullback-Leibler 
(1951) information quantity in statistics and derived AIC as its estimator. 
 
The AIC is a basis of comparison and selection among several statistical models.  As 
we all know the goodness of fit of parameters of a model can be calculated by the 
expected log likelihood, namely, the larger the expected log likelihood the better the 
explanation. The log likelihood can be regarded as an estimator of the expected log 
likelihood. 
 
The mean expected log likelihood is the quantity defined as the mean , with respect to 
the data x, of the expected log likelihood of the maximum likelihood model. That is, 
the larger the mean expected log likelihood the better the fit to the model. At first 
sight, it would seem that the mean expected log likelihood can be estimated by the 
maximum log likelihood. The maximum log likelihood, however, is shown to be a 
biased estimator of the mean expected log likelihood. The maximum log likelihood 
has a general tendency to over estimate the true value of the mean expected log 
likelihood. This tendency is more prominent for models with larger number of free 
parameters. This means that if we choose the model with the largest maximum log 
likelihood, a model with an unnecessarily large number of free parameters is likely to 
be chosen. 
 
In looking at the relationship between the bias and the number of free parameters of a 
model, it is found that  
 
(maximum log likelihood of a model) – (number of free parameters of the model) 



 
is an asymptotically unbiased estimator of the mean expected log likelihood. As 
defined by Akaike (1987) his AIC estimator of Kullback –Leibler information is  
 
AIC = -2 x (maximum log likelihood of the model)+ 2 x(number of free parameters of 
the model) 
 
Or denoted as  AIC(k) = -2 λ(θk) + 2 K 
 
is Akaike’s proposed criterion for model selection. A model which minimises the AIC 
(denoted by MAICE) is the most significant model considered appropriate. 
  
When there are several models whose values of the maximum likelihood are about the 
same level, we would choose the model with the smallest number of free parameters. 
In this sense AIC realises, the principle of parsimony. 
 
 
3. Constructing an optimal histogram? 
 
As Sakamoto(1985) defined, let x1, … , xn  be a sample of n measurements from a 
certain population and let x(1) and x(n) be the smallest and largest values in the sample. 
An interval [x(1)-0.5p, x(n)+0.5p] is divided into g classes, where p is the precision of 
each score. 
 
One way to determine the category size g is to take [2n1/2-1], where the operator [] 
represents the integer part as this is used as the first set of bins. 
 
Using the initial set of bins a histogram is constructed. The AIC is calculated to check 
the goodness of fit of various models to the initial frequency table. Using this 
approach will allow the derivation of an optimal frequency histogram. 
 
So consider where c1 and c2 are the number of bins to be grouped in the two ends of 
the histogram. Also let r be the number of bins that are grouped in the middle section.  
 
Sakamoto(1985) defined a model as being Model( 21 ,, crc  ).  
 
The respective model is defined as 
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calculating the maximum log likelihood will give 
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Let  )( jn′ be the frequencies in the jth interval and c′  be the number of bins in the 
histogram as a result of grouping initial classes resulting in 
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We will use the chi-squared statistic to test the application of the AIC in selecting the 
optimal number of bins. Given this we will need to define the chi-squared statistic, as 
it is the best known goodness of fit statistic. It can be used for both continuous and 
discrete sample data. To calculate the chi-squared statistic, you must first break up the 
x-axis domain into several bins.  
 
The chi-squared statistic is then defined as: 
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Where   
 Ni = the observed number of sample in the ith bin. 
 EI = the expected number of samples in the ith bin. 
 N = The number of bins 
 
 
We know that a weakness of the chi-squared statistic is that there are no clear 
guidelines for the selecting the number and location of the bins. In some situations, 
you can reach different conclusions from the same data depending on how you 
specified the bins. We recognise the existence of other non-parametric statistics that 
could be used but for the purposes of this paper we will only use chi-squared. 
 
 
 
 
 
 
 
 



The following example illustrates when the optimal number of bins are calculated by 
using the AIC the most appropriate distribution is selected. In the example below a 
sample of 100 observations have been simulated from the normal distribution.  
 
Below is the summary statistics of the sample of 100 observations. 
 
   

Descriptive Statistics of sample 
Mean 29.79658
Standard Error 0.542975
Median 29.5755
Standard Deviation 5.429754
Sample Variance 29.48222
Kurtosis -0.4755
Skewness 0.08972
Range 24.76618
Minimum 17.1121
Maximum 41.87827
Sum 2979.658
Count 100

 

 

The graph on the left is the histogram based on equal bin lengths, the graph on the 
right is based on the AIC optimal number of bins.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We used two other methods in calculating the bins when attempting to fit the 
distribution of the simulated set of values. The methods used were the equal 
probabilities & equal intervals. 

Histogram with Equal bins
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In all, three methods were used, including the AIC option to define an optimal 
number bins. The graphs below show how the fitted distribution altered based on the 
approach selected and that the AIC bins provided the best fit to the sampled data.    
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4. Using the AIC to obtain an optimal number of homogenous groupings. 
 

Weibull(3.1442, 17.246) Shift=+14.371
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Graph 1: The InvGauss distribution was selected when 
attempting to fit the simulated normal distributed data. The 
equal probability approach was used to select the number of 
bins. 

Graph 2: The Weibull distribution was selected when 
attempting to fit the simulated normal distributed data. The
equal bin approach was used. 

Graph 3: Based on using the AIC optimal bins. The normal 
distribution was selected when attempting to fit the simulated 
normal distributed data.  
 



Similar to the application of the AIC for selection of optimal number of bins, we have 
further looked at how we could use such an approach to identify homogenous groups. 
This, for example, is of use when trying to group postcodes or selecting sum insured 
bands in a pricing review.  Often you would use statistical techniques such as cluster 
analysis which requires specification of the number of clusters required. It is often 
difficult deciding how many groupings one should use. An optimal number of 
clusters/bands or groupings can be established by applying a similar approach as to 
finding the optimal number of bins using the AIC. 
 
Dayton (1998) proposed the use of AIC to identify optimal subsets of means or 
proportions based on independent groups. This is similar to conducting an analysis of 
variance and testing the hypothesis of equality of the means. When testing a large 
number of groups and for non-parametric alternatives it would involve testing a large 
number of pairs. 
 
An example of another practical use of AIC approach is to group individual 
policyholder age into homogeneous age bands in the context of private motor pricing. 
The recommended approach to produce relativity for policyholder age is fitting a 
continuous polynomial for the most of ages, except where one should allow for age 
specific characteristics. 
 
The most common approach in modelling risk premiums is to fit individual frequency 
and size models for each claim type then combine to form a risk premium model. If 
the individual frequency and size model adopted a polynomial function for age 
relativity, then the final risk premium relativities for age is also smooth without any 
further fitting process. This final smoothed relativity for age is ideal for rating 
purposes. 
 
If the current rating system that an insurer has can allow relativities for individual 
age, then the final smoothed relativity without any grouping should be used. 
However, it is often required in practice that the continuous relativities to be grouped 
into age bands mostly due to the inflexibility of rating systems. We have used AIC 
approach to group continuous relativities into optimal number of groups. 
 
The following summarises the steps we have taken and presents our findings. 
 
• From ages 16 to 100, a smoothed final risk premium relativity for age is 

simulated and sorted in an order. 
• Basic parameters for AIC method are calculated. (eg. Interval width, Initial 

number of intervals, minimum/maximum points and initial histogram) 
• Then using an iterative process on different combination of groups, the optimal 

combination of groups with the lowest AIC was found. 
• Compare the relativities suggested by AIC groupings to that of smoothed 

relativity. 
 
 
 
 
AIC values for some models of the Policyholder Age example. 



 
Rank Model AIC AIC-minAIC 
1 (4,2,8) 191.1974 0 
2 (4,1,8) 191.6099 0.4125 
3 (4,2,6) 191.7835 0.5861 
4 (11,5,2) 191.8737 0.6763 
5 (4,1,7) 191.8796 0.6822 
6 (10,1,7) 191.9160 0.7186 
7 (4,6,8) 192.0251 0.8277 
8 (5,6,7) 192.0368 0.8394 
9 (10,2,6) 192.2324 1.0349 
10 (11,6,1) 192.2366 1.0392 
11 (4,7,7) 192.4745 1.2771 
12 (2,2,8) 192.7216 1.5242 
13 (4,2,4) 192.7269 1.5295 
14 (6,5,7) 192.7354 1.5380 
15 (11,4,3) 192.7364 1.5390 
16 (10,3,2) 192.7784 1.5810 
17 (5,6,1) 192.7969 1.5995 
18 (5,3,7) 192.8144 1.6170 
19 (5,5,8) 192.8414 1.6440 

 
The next graph compares two relativities; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Shows the optimal number of groupings identified by the AIC. 
 

In the exercise, the optimal AIC was found to have five distictive groups.  
 
 
 
 
 
 
 
5. Conclusion 
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In this paper, we have described the use of the Akaike Information Criterion to select 
the optimal number of bins when constructing a histogram. Through simulation of 
data it was also shown that by using the bins from the AIC approach improved the 
accuracy of estimating the appropriate distribution for a particular data set. An 
example was also provided as to how the AIC could be used to provide optimal 
groupings for particular rating variables in a pricing analysis.  
 
 
References: 
 
1. Dayton, C (1998) Best Subsets using the Information criterion, University of  
      Maryland. 

2. Kullback, S & Leibler, R.A. (1951). On information and sufficiency. Annuals 
of Mathematical Statistics. 

3.      Sakamoto, Y. (1985).  Categorical Data Analysis by AIC.   Kluwer Academic 
Publishers, Dordrecht, Holland, London, Boston, 1985), 

4. Taylor, C.C., (1987). Akaike’s Information Criterion and the Histogram. 
Biometrika, 74, 636-639, 

 
 
 
 


