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Abstract

This paper focuses on the practical approach to diversification and its impact on the 
value of insurance liabilities at various confidence levels. 

In an insurance portfolio, the diversification benefit is intended to allow for the likelihood 
that not all lines of business (risks) will develop adversely or favourably at the same 
time. Whilst there are a number of factors that can influence the development of all lines 
of business, the impact is reduced at portfolio level. 

There are a growing number of papers addressing the issue of dependence in a finance 
and insurance framework. However, their focus is on theoretical discussion with only 
marginal insight into practical applications. This paper is intended to fill this gap. In 
particular, it discusses computing empirical correlations and applying various 
dependence structures (both parametrical and empirical) in the multidimensional case. It 
also addresses various pitfalls and practical issues inherent in applications of this theory.

The discussion is supported by empirical examples and suggestions on how different 
stages of the assessment can be done in practice using a simulation approach.

Keywords: Diversification; dependence; correlation; elliptical copulas; empirical copula; 
Iman-Conover method;
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1. Introduction

One of the more important issues in the insurance framework is aggregation of individual 
risks and understanding the associated joint distribution of outcomes. This is especially 
important when assessing insurance liabilities or capital requirements at various 
confidence levels. In Australia in particular the regulatory environment requires 
assessment of insurance liabilities at a 75% confidence level.

The complexity arises since not all risks (lines of business) in a portfolio will develop 
adversely or favourably at the same time. Whilst there are a number of factors that can 
influence the development of all lines of business, the impact is often reduced at portfolio 
level. The insurance and finance literature refer to this phenomenon as a diversification 
benefit. The purpose of this paper is to discuss practical methodologies for assessment 
of this diversification benefit.

In practice many different approaches have been developed to deal with the assessment 
of diversity. However, there is no golden method. In general, the most important factor is 
to design a sound process, which takes into account all of the stages required in 
developing a robust model, whilst acknowledging any data or resource limitations.

A core component of this paper is a suggested process to assess the diversification 
benefit for a portfolio of general insurance liabilities1. Importantly the main focus of the 
paper is on derivation of diversification benefits given underlying distributions, not on 
assessment of underlying distributions for individual liability classes. The paper will 
address the following main topics:
 How to define a diversification benefit and what methods are available for its 

calculation;
 How to derive correlation assumptions between classes of business;
 What dependence structure is adequate; and
 How to assess the overall level of diversification.

There is potentially a very wide range of considerations that can be taken into account 
eg. aggregate limits, non-lognormal distributional assumptions for individual classes, 
limited data etc. The more these are explicitly allowed for, the greater the complexity of 
the required model. In practice, an actuary has to decide on the overall level of 
diversification by taking into account each of the main assumptions and also by factoring 
in any additional allowances. At the end, considerable judgement may be needed to 
understand the overall impact of all relevant factors and determine an appropriate level 
of diversity.

The paper consists of the following main sections:
 A definition of diversification benefit and a suggested process for its assessment 

(chapter 2);
 A review of four modelling approaches to the calculation of the diversification benefit 

(chapter 3);

                                               
1 Although this paper usually refers to claims liabilities, the methods can be generalised and also 
applied to premium liabilities, and hence the total insurance liabilities.
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 A description of the various diversity modelling stages - selection of correlation 
assumptions (chapter 4), selection of a dependence structure  (chapter 5) and 
assessment of implied diversity  (chapter 6); and

 An appendix section, which shows details on algorithms used in practical modelling 
and some detailed mathematical workings.

The reader should note that different chapters have different levels of complexity. Whilst 
I have tried to minimise the use of mathematical jargon throughout the text or deferred it 
to the Appendices, some sections include a considerable number of equations and 
formulas. As a guide, the reader who has not used mathematics for a while should focus 
on chapters 2, 6 and 7. Chapters 3 to 5 are more technical, however there are some 
sections (eg. 3.3) that provide useful high-level and non-technical discussions on the 
practical issues involved in the modelling stages.
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2. General approach to diversification benefit

2.1 Definition

Diversification benefit can be defined either in relative or in absolute terms. For the 
purposes of this paper it reflects the difference between an undiversified value and a 
diversified value of insurance liabilities expressed as a percentage of the undiversified 
value.

The diagram below illustrates the above definition by considering the 75th percentile of 
insurance liabilities for a given portfolio. The left hand side shows the overall size of the 
liabilities if we did not allow for any diversification between lines of business. The right 
hand side shows the result after allowing for inter-dependencies between these classes.

Undiversified 
75th percentile

Diversified 75th

percentilePublic Liability

Professional 
Indemnity

Motor

Construction

In order to obtain an undiversified number in a simulation approach, one could generate 
a single set of random uniform variates and use them for each of the classes to calculate 
simulated liabilities2. The overall 75th percentile for the total portfolio would be then 
exactly equal to a sum of the 75th percentiles for individual classes.3

In practice the undiversified calculation sets an upper bound on the portfolio’s liability, as 
it implies that given individual distributional and variability assumptions, the maximum 
loss at a given confidence level is equal to the sum of individual class losses at that 
confidence level.

On the other hand a diversification benefit allows for inter-relations within the portfolio 
and, in particular, it implies that not all lines develop in the same direction at the same 
time.

                                               
2 By application of an inverse transform )(1

iii uFu  , where )( ii xF are cumulative 

distribution functions (“CDF”) for individual classes.
3 In practice, this approach is equivalent to assuming a perfect dependence (comonotonicity) 
between classes.

Diversification Benefit
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It is important to note that a portfolio’s diversification is only visible in the context of the 
total variability of the portfolio, which can be represented by a standard deviation, a 
variance or various percentiles. We will not be able to observe any impact of 
diversification benefit if we are calculating the mean of a portfolio.

2.2 General approach

A diversification benefit is a measure of how much diversity is allowed for in a particular 
portfolio. It is useful for benchmarking different portfolios with a similar mix of business or 
for comparing a basis from valuation to valuation. In order to derive a diversification 
benefit we must calculate both a diversified and an undiversified distribution.

It is useful to consider a portfolio with several classes of business, for which we want to 
estimate an insurance liability risk margin4. 

Theoretically the most appropriate way to deal with this task is to use the available data 
to estimate a joint distribution describing the outstanding losses for the portfolio. Then 
we can calculate the standard deviation and the 75th percentile of the distribution and 
hence calculate the required risk margin. However, as is common in insurance, there is 
generally not enough data to sufficiently and reliably estimate such a distribution.

A common approach to overcome the lack of sufficient data is to utilise the available 
data to estimate individual class distributions and pair-wise linear correlations, then to 
use this information in a simulation process to generate dependent vectors. There are 
however some flaws in this approach. The most important one is that the linear 
correlations may not be consistent with the individual distributions, so the overall 
portfolio distribution is not unique. Whilst we can try to overcome this problem by using 
rank correlations (eg. Spearman’s rho) instead, the problem of uniqueness re-appears. 
In practice, actuaries often “forget” about this uniqueness problem. The selected 
approach depends on various aspects such as available software, skills and required 
accuracy of the calculation.

Many alternative methods are available. Some of them are ”quick and dirty” 
approximations, which are not necessarily mathematically correct, but are often used in 
practice and described by practitioners. Such methods generally rely on special features 
of the Normal distribution. Other methods are more complex and usually require more 
advanced skills and resources. The main advantage of them is mathematical soundness 
and in some cases flexibility. An actuary usually has to decide which method is best for a 
given task.

It is also important to comment on two approaches, which are probably the most 
commonly used in Australia5. Both of them were published in 2001 aiming to present an 
end-to-end process for risk margin estimation. The primary focus of these papers was on 

                                               
4 In Australia, this refers to the standards imposed by APRA (the local prudential regulator), which 
state that the central estimate (mean) plus risk margin of the general insurance liabilities must 
secure the 75th percentile of the underlying distribution (subject to the risk margin being greater 
than or equal to half of the standard deviation). In this paper, the risk margin refers to the 75th

percentile increment above the mean.
5 Collings and White [3] and Bateup and Reed [1]
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the analysis of the variability inherent within individual classes. However, they also 
outlined how actuaries should assess diversification benefit at a total portfolio level.

In summary, each of the papers assumes a very similar approach to diversification, 
which is generally equivalent to the “Lognormal approximation” described in section 
3.2.16. In particular, the following steps are outlined:

 Estimate variability assumptions for individual classes.

 Estimate correlation assumptions for the total portfolio (Collings and White [3] use 
empirical data and judgement, while Bateup and Reed [1]  use judgement and 
industry survey).

 Given individual-class variances derived in the first stage, calculate the overall 
portfolio variance and use it to derive the diversified risk margin7.

Neither of the papers differentiates between various types of correlation measures, nor 
separates dependence from correlation (see section 4.1 for the discussion). Overall 
these approaches are quick and easy to use8, but actuaries should be aware of their 
deficiencies.

2.3 Step-by-step approach

When dealing with a problem such as assessment of diversification benefit, it is 
important to have a robust process. The approach should both correctly identify and 
allow for all of the crucial factors affecting the analysis, and should also have a feedback 
loop, which serves as an additional assessment tool for reasonableness.

Given the above, the following process for selection of a diversification benefit for a 
portfolio of general insurance liabilities is recommended:

1. Estimate or judgementally select distributional and variability assumptions for 
individual lines of business (marginal distributions F1, …, Fn). This may involve 
various stochastic methods like bootstrapping, stochastic chain ladder, Markov 
Monte Carlo method etc., which investigate the underlying distributions.9

2. Estimate or assume a matrix of pair-wise linear/rank correlations. This point is a 
subject of the next chapter, where I discuss the appropriateness of different 
measures in the context of a general insurance portfolio.

3. Estimate a joint distribution for outstanding losses of the portfolio. This step is 
basically the heart of the process and not surprisingly causes most problems and 
errors. 

                                               
6 Bateup and Reed [1] mention a simulation process in section 6.5.1 of their paper, which could 
suggest that they used a procedure similar to the one described above with a judgementally 
selected correlation matrix.
7 Bateup and Reed [1] explicitly mention use of a lognormal distribution to derive the 75th

percentile.
8 In particular, Bateup and Reed [1] present a “rule of thumb” formula, which as they suggest, can 
be used to calculate diversification discount for various portfolios. More discussion on that is 
included in chapter 6 of this paper. 
9 This point is outside the scope of this paper. There are a number of papers, which deal with this 
topic. The reader may refer to Bateup and Reed [1], Collings and White [3] for descriptions of 
methods such as bootstrapping, stochastic chain ladder or the Mack method.
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4. Assess the joint distribution against the underlying data and assumptions used. This 
step should also involve some sensitivity and scenario testing, to check if the results 
are consistent with the assumptions and observed experience. 

5. Based on the selected joint distribution, calculate the required diversified standard 
deviation and the required percentiles (in our case we would calculate the 75th

percentile). The difference between the undiversified and the diversified percentiles 
gives us a diversification benefit.

6. If required, adjust the result for any judgemental loadings to allow for results of the 
scenario/sensitivity analysis or any other factors, which we believe are not properly 
modelled by the statistical methods selected.

7. Allocate the diversified figure down to the individual classes.

The above overview gives a high-level algorithm, which can be transferred into real life 
using a number of techniques. The main difference between approaches is usually the 
approach to step 3. Other steps often use very similar techniques and generally can be 
performed regardless of the selected method.

The focus of this paper is on steps 2 to 7. Due to its importance I have a particular 
emphasis on step 3.
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3. Selection of Joint Distributions

I will start the overview of available methods with a description of copulas, which are a 
crucial technique in estimation of appropriate joint distributions. Later I will describe 
another mathematically sound technique and two common approximations. At the end of 
the chapter, I will compare all of the outlined methods and point out some flaws or 
possible extensions. It is important to bear in mind that the presented list is not 
exhaustive and could be quite easily extended.

3.1 The Copula Theory.

In terms of the developments in an insurance and finance framework, this method is 
arguably the most recent one. It has generally only appeared within wider actuarial 
literature over the last 5 to 10 years. In terms of theoretical attractiveness and practical 
tractability, it is probably the most appealing method at the moment.

A copula is simply a mathematical function that is used to join different distributions 
together. More mathematically a copula can be defined as a multivariate uniform 
distribution that is used to describe dependence10. Precisely speaking, for given 
continuous marginal distributions F1, …, Fn and an n-copula C, a unique multivariate 
distribution G expressed by

G(x1, …, xn) = C(F1(x1), …, Fn(xn))

exists, with marginal distributions F1, …, Fn. Additionally, if we have a proper rank 
correlation matrix it is possible to find a copula, which can be parameterised so that it 
reproduces this matrix.

Copulas do not put any restrictions on the underlying marginal distributions and also 
maintain their integrity. They allow for a variety of dependence structures11, and some 
copulas can be easily employed in simulation algorithms. There are a great number of 
copula families, each offering some distinct features.

There have been many papers written on copulas, which give a good overview of the 
underlying theory. Many of these are listed in the Bibliography. In particular copulas in 
relation to bivariate distributions have received a lot of attention both in terms of the 
analysis of properties and also practical applications. However, there are still only a 
limited number of publications on the multivariate case.

In this paper, I will focus on a family of the elliptical copulas (in particular, Normal and t-
Student copulas). There are three main reasons for this choice:

 These copulas can be applied in multivariate cases without any loss of dimensions.

                                               
10 This fact is very important from a practical modelling perspective. In particular, a simulation 
approach usually requires generating uniform variates (see Appendix 9.1). These are generally 
random, and so “independent” (see “6.8 Important Caveats” section). If one wants to generate 
dependent samples, then a copula must be used, as it allows generating dependent uniform 
variates.
11 Dependence structure relates to a specific function, which fully describes the relationship 
between events or between random variables. In this context, each copula implies a particular 
dependence structure.
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 There exist quite simple simulation algorithms, which can be easily programmed in 
Visual Basic for Applications (“VBA”).

 The family allows quite easy and flexible modelling of tail dependence12 (eg. a 
Normal copula provides zero tail dependence, while a t-Student copula allows 
varying the strength of tail dependence).

The reader should also be aware of other copula families. In particular, Archimedean 
copulas have gained wide interest due to their diversity and simplicity in bivariate-case 
applications. However, the main challenge with this family is its extension to multivariate 
cases.

In particular, there are two main restrictions imposed by the construction of Archimedean 
copulas. Firstly, an Archimedean copula can only be parameterised by up to n-1
parameters (instead of n(n-1)/2), which represent a series of n-1 suitable bivariate 
relationships13. Additionally, there is also the lack of relatively easy-to-use algorithms 
that can be applied in practical modelling.14

Alternatively, practitioners could focus on parameterisation of Archimedean copulas15

and then use some specialist software package to utilise them. However, the software 
can be expensive.

The theory and application of the elliptical copulas is described in-depth in chapter 5 of 
this paper. At this point, I only present a general algorithm for the application of any 
family of copulas.

The general approach is as follows:

1. Estimate or assume marginal distributions F1, …, Fn,

2. Estimate or assume a matrix of pair-wise rank correlations,

3. Select an n-copula C consistent with the selected rank correlation matrix (see section 
5.2 for more detail),

4. Simulate a random vector of correlated uniforms (U1, …, Un) (which has the joint 
distribution C).

5. Calculate a correlated sample using marginal distributions by applying an inverse 
transform ui → Fi

-1(ui) for i = 1, …, n. The vector (F1
-1(U1), …, Fn

-1(Un)) then has the 
joint distribution H with marginal distributions F1, …, Fn and the selected rank 
correlation matrix.

                                               
12 In the context of this paper, tail dependence means that extremely high/low values from one 
line of business imply an increased chance of a similar extraordinary effect on other lines. Refer 
to Embrechts, Lindskog, McNeil [7] for a mathematical definition.
13 Note that for some portfolios this restriction may not be important, as the correlation 
assumptions naturally reduce to n-1 parameters (ie. there are only n-1 distinct correlation 
coefficients in the correlation matrix).
14 General algorithms do exist, however practitioners need to be aware that their application 
requires more advanced skills and understanding of multivariate Archimedean copulas. For more 
discussion refer to Whelan [16]. 
15 In particular, Isaacs [10] describes an approach to parameterise a Gumbel copula, which can 
be then used within a commercial modelling package. 
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I also comment on the above algorithm in the context of the Iman and Conover 
technique, which is described below. There are several similarities between that method 
and a Normal copula approach. 

3.2 Other possible approaches

This section includes an overview of three alternative methods: two common 
approximations and one exact method called the Iman and Conover technique.16

3.2.1 Lognormal approximation

This is a common method in practice, as it can be done in a spreadsheet without any 
simulation process. The method relies on some properties of lognormal and normal 
distributions (abusing the latter). Sometimes, only a normal distribution is used 
throughout this method. This makes it more mathematically correct, but is not consistent 
with the generally accepted view that claim loss distributions are skewed.

The method can be outlined as follows:

1. Assume that outstanding losses for the total portfolio have a lognormal distribution,

2. Estimate or calculate variances / standard deviations for individual classes i  for 

i=1, …, n,

3. Estimate or assume pair-wise linear correlations between individual classes ijr ,

4. Calculate the portfolio variance (and so the standard deviation) using the following 

formula  
 


n

i

n

ji
ijiP

1

222 2  , where 2
ij  is a covariance,

5. Parameterise the portfolio distribution, so P ~ ),( PPLN  , where 



n

i
iP

1

 ,

6. Calculate the required 75th percentile for the total portfolio17.

3.2.2 Normal approximation.

This method uses a simple observation made about the probability density function 
(“pdf”) of a multivariate Normal distribution. The mathematical formula with all necessary 
details is shown in Appendix 9.5. 

The general idea behind this approximation is to use and simplify a quadratic form, 
which appears in the formula for the multivariate pdf. The main difference between this 
approximation and the previous one is that instead of assuming a lognormal distribution 
for the total portfolio, we need to assume some sort of distribution (usually lognormal) for 
each of the individual classes.

The approximation uses the quadratic form of zTR-1z, which is then simplified to the 
following formula (x-)TR(x-). The correctness of this formula is questionable. However, 
                                               
16 Comparison of these methods and the copula theory is presented in section 3.3
17 If we are using a spreadsheet such as Excel we have a pre-defined function for such 
calculations, which finds percentiles for a lognormal distribution.
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as an approximation the formula often behaves well18 and avoids complicated matrix 
inversion. The (x-) is a column vector of increments between a given percentiles (the 
75th in our example) and means (the best estimate) for individual classes. The square 
root of the quadratic form (x-)TR(x-) is a diversified increment for a given portfolio.

The application of this method can be outlined as follows:

1. Calculate differences between the 75th percentile and the mean for each of the 
individual classes and record them in a column vector (x-),

2. Estimate or assume pair-wise linear correlations between individual classes ijr  and 

record them in a matrix R,

3. Calculate the required 75th increment above the mean19 for the total portfolio using a 
square root of the formula (x-)TR(x-)20.

Again, as in the case of the lognormal approximation, all of the above can be done in a 
spreadsheet without any simulation.

3.2.3 The Iman and Conover Technique21

The main advantage of this method is that it is a mathematically proven "distribution-
free" approach, which means that any type of distributions may be correlated. Besides, 
the procedure is also relatively easy to apply. The only complication may come with 
some matrix transformations such as the Cholesky decomposition or an inversion of 
matrices. Otherwise, there are no complex calculations.

The method can also be used under a sampling approach. In particular, we can combine 
it with other available correlation methods (discussed at the end of this chapter).

Additionally, the resulting samples for each distribution reflect the input distribution 
function from which they were drawn. 

As outlined in the original work by the authors, the procedure relies on the theoretical 
concept that:

 If we have a random matrix A, in which columns have a correlation matrix I (the 
identity matrix), and a so-called “target” (input) correlation matrix B,

 Then there exists a transformation matrix C such that the columns of ACT (where CT

is the transpose of C) have a correlation matrix B.

 Since B is positive definite22 and symmetric, there exists the matrix C, the Cholesky 
decomposition of B, such that B = CCT.

                                               
18 Ie. the error increases with the number of lines included in the portfolio and also with the level 
of skewness of marginal distributions.
19 The increment refers to the diversified 75th percentile less the portfolio mean.
20 In Excel, this can be done using a combination of three functions: 
SQRT(MMULT(TRANSPOSE(x-),MMULT(R, x-)))
21 This was the first method (introduced by Iman and Conover [9]), which could be applied to 
arbitrary marginal distributions. Following that, there were some other similar methods presented 
eg. Clemen and Reilly [2]. 
22 Refer to section 4.3.5 for details.
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The algorithm for this method (“IC algorithm”), which can be used in practical 
applications, is included in Appendix 9.2. The reader can also refer to the original work 
by Iman and Conover for more detailed description of this technique. The IC algorithm 
can be employed in Monte Carlo simulations using either a spreadsheet or more cleanly 
as a set of procedures in VBA. There are also commercial simulation packages that rely
on the IC method in a slightly modified version. 

It is worth noting that the IC algorithm is quite similar to a simulation procedure for a 
Normal copula (i.e. if we use normal or van der Waerden scores). In particular, the step 
3 (refer to the IC algorithm in Appendix 9.2) could be replaced by simulated uncorrelated 
normal deviates. However, the method still would have some distinct features such as:

 The Iman and Conover method works with existing samples produced from marginal 
distributions, while a Normal copula generates samples using the inverse transform.

 The IC technique approximates percentiles from the marginal distributions, but a 
Normal copula calculates them exactly.

Given the above, the IC method can be considered as a non-parametrical approach, 
which combines pseudo empirical data (generated from marginal distributions) into a 
single joint distribution without any explicit parameterisation. In particular, The IC 
algorithm implicitly assumes a Normal-copula-like dependence structure. However, the 
reader should be also aware that it is possible to extend the IC method to allow for other 
dependence structures. This can be done by using different scores in the IC algorithm 
(see Mildenhall [14]). The main requirement is that the selected scores need to be 
suitably normalized (eg. have mean zero and standard deviation one). 

Summarising, it is useful to show how the IC algorithm performs against the Normal 
copula (used here as a benchmark). The table shows differences between these two 
approaches in a bivariate case (both of the variables have a Pearson distribution with 
α=13.1 and β=100,000, Spearman’s correlation is set to 0.2).

Statistics IC method Normal copula Difference
Mean 16,524 16,450 0.5%
Std. Dev. 3,564 3,678 -3.1%
CV 21.6% 22.4% -3.5%
50th Perc. 16,006 15,995 0.1%
75th Perc. 18,512 18,550 -0.2%
99.5th Perc. 29,008 28,690 1.1%
99.95th Perc. 35,353 35,591 -0.7%

The results are subject to a random error as only 1,000 simulations were used to 
produce the above table. However, we can observe that the IC method gives a 
reasonably good approximation of the Normal copula output. The main concern is in 
regard to higher/lower percentiles and the standard deviation. These statistics are highly 
influenced by tail values, so a larger sample needs to be generated in order to achieve 
convergence.
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3.3 Comparison and pitfalls

In the table below I have listed each of the described methods and their main properties 
(both advantages and disadvantages). 

Methods Advantages Deficiencies
Lognormal 
approximation

 Fast and easy to apply, no specialist 
software required (only a 
spreadsheet).

 Does not require marginal 
distributions to be specified.

 For close to symmetrical distributions 
produces reasonably correct results.

 As marginal distributions become 
more skewed, the error becomes 
larger.

 Does not provide any easy method to 
allocate the diversification benefit 
back to the individual classes.

 Cannot be used to derive a joint 
distribution.

Normal 
approximation

 Fast and easy to apply, no specialist 
software required (only a 
spreadsheet).

 Does not require marginal 
distributions to be specified (unless 
they are necessary to calculate 
individual percentiles).

 For close to symmetrical distributions 
produces reasonably correct results.

 As marginal distributions become 
more skewed, the error becomes 
larger.

 Diversification benefit is assumed 
constant for all percentiles.

 Does not provide any easy method to 
allocate the diversification benefit 
back to the individual classes.

 Cannot be used to derive a joint 
distribution.

The copula 
theory

 Maintains integrity of marginal 
distributions.

 Maintains input rank/linear 
correlation matrix reasonably well.

 Distribution-free approach.
 Can be employed in simulation 

procedures.
 Allows for various dependence 

structures.
 Allows modelling of tail dependence.
 Can be combined with other 

methods.
 Flexible in application.
 Generates an exact joint distribution.

 Requires advanced skills.
 Might be quite time-consuming (in 

particular in development of models).
 Not all available copula families can 

be easily used in multivariate cases.
 Not all available copula families can 

be easily used in simulations.
 Given the available data there is 

often no obvious single correct 
copula.

 Sometimes it is hard to assess if the 
selected copula properly represents 
the dependence structure of the joint 
distribution (this may lead to large 
errors in particular at high 
percentiles).

The Iman and 
Conover 
Technique

 Maintains integrity of marginal 
distributions.

 Maintains input rank/linear 
correlation matrix reasonably well.

 Distribution-free approach.
 Can be employed in simulation 

procedures.
 Can be combined with other 

methods.
 Reasonably flexible in application.
 Provides a close approximation of a 

joint distribution.
 It is possible to extend this method to 

other dependence structures by 
using non-normal scores.

 Requires advanced skills, however it 
is easier to implement than copulas.

 The quality of an approximation of 
the joint distribution depends on the 
number of observations (this is 
particularly evident in calculation of 
higher percentiles for more than two 
dimensions).

 In order to use the method correctly, 
the entire output sample from the IC 
method must be taken.

 The number of data points in the 
output is equal to the number of data 
points in the input.
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The above table highlights the main areas where a practitioner has to be careful when 
selecting a particular approach. Usually, the main pitfall is that users overlook or dismiss 
the shortcomings of the above methods. It is particularly important that the user 
understands the difference between dependence and correlation. There are a number of 
myths, some of which are discussed further in section 4.1, which can lead to 
misunderstanding of the methods and results.

Finally, even if we use the best method available, there are some key assumptions that 
need to be properly and carefully specified. If these are mis-estimated then the basic 
rule of GIGO (Garbage-In-Garbage-Out) applies.

Closing this chapter, I consider particular problems, where merging the copula theory 
and the Iman and Conover Technique may be the most efficient solution:

 Consider a portfolio with many individual valuation classes that were created to 
maintain homogeneity within each class. The number of classes makes it very hard 
to select a single correlation matrix that is positive definite (unless it was derived 
empirically to ensure that this property holds). In this situation one solution is to 
group similar classes (based on correlation assumptions) in sub-portfolios, calculate 
correlated results for these sub-portfolios and then perform a second-stage 
correlation between the sub-portfolios to derive the overall portfolio distribution. In 
particular, the first step could be performed using copulas and the second one using 
the Iman and Conover Technique. Alternatively, we could also use a second layer of 
copulas in the second stage, but this would require us to estimate joint distributions 
for the sub-portfolios.

 A portfolio consisting of a number of classes, for which dependence structures vary 
between different pair-wise relationships (ie. some catastrophe classes require 
strong upper tail dependence, while others do not require any tail dependence). 
Again this problem could be dealt with using a two-stage diversification process, 
which would group some of the classes together and allow for these special features.

The main issue with a two-stage diversification process is that some correlation can be 
lost. This is especially true if no tail dependence is selected in any of the stages, which 
could compensate for such a loss. I have set out a simple example in the Appendices, 
which illustrates this issue. Practitioners have to be aware of this feature and test their 
results, so they understand any differences between the input assumptions and final 
numbers.
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4. Selection of correlation assumptions

This chapter is dedicated to the second step in the general process of diversification 
benefit assessment. In particular, it gives details on the use of the Spearman’s rank 
correlations for a portfolio of general insurance liabilities.

However, before moving onto the main part of this section I have documented some of 
the potential pitfalls. 

4.1 Pitfalls and misinterpretations

The most common pitfall encountered by practitioners is that when they think about 
correlations, they usually have in mind linear correlations. There are two main reasons 
for this situation. Firstly, the linear correlation coefficient is very easy to calculate and 
secondly it is a natural measure of dependence for elliptical distributions (such as a 
multivariate normal distribution).

The two diagrams below can illustrate the problem of using linear correlation. The 
diagram on the left hand side shows that X and Y are perfectly linearly correlated (in fact 
X = Y, so the linear correlation is 100%). On the right hand side, the diagram also shows 
a perfect (100%) correlation, but a non-linear one. The linear correlation coefficient is 
only around 80%, which understates the strength of the relationship between X and Y.
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Apart from the above, there are many myths about correlations and dependence23 that 
affect the overall understanding of inter-relations between variables and events. I have 
listed several that I believe are the most common.

                                               
23 Correlation can be simply defined as a tendency of two paired variables to move in the same 
direction. The dependence is more about the relationship between these two variables. In this 
sense, the dependence is infinite-dimensional, whilst the correlation coefficient is a scalar, which 
only captures a single dimension and not the potential complexity of the dependence function. 
This fact is also illustrated on the above right-hand-side diagram. Although the Spearman rank 
correlation coefficient gives us the correct perfect correlation, we would not be able to reproduce 
a relationship between X and Y ie. dependence (as on that graph) using the Spearman 100% 
coefficient or any other correlation measure.
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Common misinterpretations are:

1. If X and Y are independent and Y and Z are independent, then X and Z are also 
independent.

 This is false as independence is not transitive.

2. If variables X and Y are uncorrelated then they are independent.

 This is generally false. However there are some specific exceptions, for which 
nil correlation does imply independence24.

3.  If X and Y are perfectly dependent and X and Z are perfectly dependent, then Y 
and Z are perfectly dependent.

 This observation is only false for dependence and does not directly relate to 
correlations. However, it highlights a difference between dependence and 
correlations. As is well known, there is a constraint of positive-definiteness 
that a correlation matrix must satisfy. This condition, however, does not 
generalize to the case of dependence.

4. Sensitivity testing of correlation coefficients is equivalent to sensitivity analysis of 
the dependence risk.

 In order to fully specify dependence between variables we need to use a 
copula (dependence function). Correlations capture only linear dependence.
If we base our sensitivity analysis only on correlations we will not see the 
whole universe of outcomes.

5. No observations or other evidence available about the dependence between 
variables implies that they are independent.

 This issue is self-explanatory (no information about dependence should not 
automatically imply independence). Practitioners should be generally prudent 
in their approach to unknown risks, as in practice independence is usually the 
most optimistic scenario.

Examples of the first three misinterpretations are shown in Appendix 9.9.

4.2 Judgement vs. Empirical estimation

In general insurance, a key problem when assessing any modelling assumptions is often 
a data limitation, either quality or quantity. This issue is especially difficult if, in any part 
of the analysis, we rely on a statistical approach. Actuaries usually deal with this by 
applying professional judgement, which may or may not suitably compensate for the lack 
of data.

This problem is particularly apparent in estimation of correlation assumptions. As a result 
actuaries have developed some rules of thumb to select correlations, which “feel” 

                                               
24 In particular, if X and Y have Bernoulli distributions then it can be proven that nil correlation 
implies independence. In this context, it is also worth mentioning that normality of the marginal 
distributions eg. X,Y ~ N(0,1) does not guarantee independence if they are uncorrelated. They 
also have to be jointly normally distributed.
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intuitively correct for a given portfolio. Such an approach usually involves specifying a 
correlation structure between different classes using categories such as high, medium 
and low. The initial outcome could produce a correlation matrix shown below. 

Marine & Aviation Property Liability

Marine & Aviation 1 Medium Medium-to-Low
Property Medium 1 Medium
Liability Medium-to-Low Medium 1

The next step involves changing the words into numbers whilst maintaining relativities 
between classes. In doing so we have to make sure that the matrix is symmetrical and 
positive definite.

As this approach is entirely judgemental, we generally would not worry about specifying 
if the matrix includes rank correlations or linear correlations. The definition however 
would have to be consistent with the next steps of our analysis.

Alternatively, we could use actual data to derive a correlation matrix (ie. an empirical 
approach). In this situation the only questions are in regard to the benefit of using 
empirical correlations and the measure to be used.

Naturally, the first of the concerns is the most important. If we do not see any added 
value in using empirical correlations, we will not calculate them. However, there can be 
some significant benefits from such an approach. These include:

 Obtaining a truer picture of the correlations between individual classes in a portfolio.

 Consistency and internal integrity of the resulting correlation matrix.

 The possibility of seeing correlations from different perspectives by varying factors 
and criteria.

 Particularly when used over time, the analysis becomes an additional tool in 
understanding any material changes within the portfolio (including big incurred 
movements, commutation of parts of the business or writing new business).

It is important to consider these issues when setting up a framework to assess 
diversification for a given portfolio.

However, every approach has its difficulties. In estimating empirical correlations there 
may be lack of (or poor) data for some classes, which distorts the overall picture. 
Additionally there may be some other outside information, which is not captured by the 
analysis. In general, actuaries should understand their data and its limitations and apply 
judgemental adjustments when necessary.

4.3 Estimation of empirical correlations 

There are a number of papers that satisfactorily describe and compare various 
correlation measures. I have included some of them in the Bibliography section (eg. 
Embrechts, McNeil and Straumann [6]). I believe that they give a complete picture of the 
topic, so I limit my description of these measures to a very high-level outline of three key 
measures with the main focus on practical use and deficiencies.
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4.3.1 Pearson’s correlation

This measure is commonly known as a linear correlation or a product moment 
correlation. For two variables X, Y the linear correlation coefficient equals

)()(
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),(

YVarXVar

YXCov
YXr  .

For a given set of data, a linear correlation coefficient can be simply calculated using 
Excel formulas (based on sample versions of the covariance and variance).

4.3.2 Kendall’s tau

This is the first of the rank correlation measures. Let (X1, Y1) and (X2, Y2) be independent 
and identically distributed random vectors, each with a joint distribution F. Then 
Kendall’s tau for two variables X and Y equals 
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The first term is the probability of concordance while the second one is the probability of 
discordance.

In practice, we could use one of the available sample versions of this measure such as
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The “sgn” function is a sign function, which returns +1 for positive and -1 for negative 
values.

4.3.3 Spearman’s rho

This nonparametric index is sometimes knows as the grade correlation. It measures the 
monotone association between the variables. It is calculated using rankings of values, 
not actual values themselves. A value's "rank" is determined by its position within the 
min-max range of possible values for the variable.

If x and y are observations of random variables X and Y with marginal distributions FX

and FY then the “grades” (equivalent of ranks for the sample) are given by FX(x) and 
FY(y) respectively. Spearman’s rho (correlation coefficient) for these two variables is 
then equal to

 
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25 The logic behind this formula is as follows. Consider two samples, x and y, each of size n. The 
total number of possible pairings of x with y observations is n(n-1)/2. Now consider ordering the 
pairs by the x values and then by the y values. If x3 > y3 when ordered on both x and y then the 
third pair is concordant (ordered in the same way), otherwise the third pair is discordant (ordered 
differently). The numerator is the difference between the number of concordant and discordant 
pairs.
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4.3.4 Comparison of the measures

There are several differences between the three approaches described. On one side, we 
can put the linear correlation and on the other side both Kendall’s tau and Spearman’s 
rho, as these measures have very similar characteristics.

Although the Pearson’s correlation is very popular and easy to use, there are some 
important advantages of the other two indices. Firstly, they always exist and can take 
any values in the interval [-1,1]. Secondly, they are independent of the underlying 
marginal distributions. The latter difference is particularly important in general insurance, 
where we usually deal with skewed distributions from various families.

There are other more technical advantages of these two measures (for example the fact 
that they can be expressed in terms of copulas, which is not the case for the linear 
correlation). More details on these can be found in Embrechts, McNeil and Straumann 
[6].

The reader should note that there exist proven relationships, which connect the 
described measures. These are very useful, especially when we want to parameterise 
various copulas using the same set of assumptions. However, as Kurowicka and Cooke 
[12] point out, not all correlation matrices can be freely transformed. In particular, for 
some cases a positive-definite (or a positive semi-definite) rank correlation matrix may 
give us a non-positive-definite (or a non-positive-semi-definite) linear correlation matrix. 
This should be considered when dealing with these transformations in practice and an 
appropriate correction algorithm should be applied26 if necessary.

The transformation formulae are as follows:
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4.3.5 Correlation matrix consistency

There are mathematical constraints imposed on correlation coefficients. For example, 
one variable cannot be strongly positively correlated with two other variables if they are 
strongly negatively correlated with each other. These constraints relate to the fact that a 
correlation matrix must always be a positive semi-definite matrix. If this criterion is not 
met then a simulation procedure will produce incorrect results.

                                               
26 See Appendix 9.7 for an example of such algorithm.
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Additionally, some algorithms/methods require positive definiteness (instead of positive 
semi-definiteness). This condition is stronger and sometimes harder to obtain27.

4.4 Rank correlations in practice

This section sets out some steps, which could be followed in practice to estimate a 
correlation matrix for a general insurance portfolio.

For this example we will consider an insurance portfolio consisting of several classes. 
The available information includes monthly incurred movements by contract, and also 
various contract details such as underwriting year, line of business / modelling class, 
region, broker (or other distribution channel information), underwriter, etc.

We want to apply a technique that is not influenced by varying distributions of the 
individual classes.28 Hence we use Spearman’s rho, which uses rankings of values. 

The calculation can be entirely performed in Excel, however the reader will need to 
develop a VBA procedure to correctly rank observations (incurred movements) in the 
given sample. 

A suitable algorithm is:

1. Aggregate the data, taking care to suitably limit the impact of random ”noise” (eg. 
use development half-years instead of monthly).

2. Select a number of key criteria, which are the most appropriate for the analysis (eg. 
we can analyse the information by development periods, by region, by currency, by 
underwriter, by broker, by distribution channel etc.).

3. Group data according to the selected criteria (so incurred claim movements have two 
dimensions: by class and by a given criterion).

4. Rank the data and calculate Spearman’s rhos.

For some criteria it may be necessary to additionally split information into sub-groups in 
order to obtain more homogenous samples. The aggregation can be then done using 
appropriate weights (eg. premium information).

The final output of the above analysis is a number of rank correlation matrices, which 
present a wide picture of the portfolio. These can be analysed and (if required) adjusted 
manually, so the most appropriate assumptions are selected. The last step, depending 
on the size of adjustments, would have to include an overall check of positive 
definiteness.29

                                               
27 In mathematical terms, the strictly positive definite condition requires eigenvalues of a matrix to 
be positive; the positive semi-definite condition requires them to be non-negative. The reader 
should refer to the following website for more details on these important properties 
http://en.wikipedia.org/wiki/Positive-definite_matrix
28 This problem would be especially visible, if in our data we had a number of criteria 
(development periods or other groupings), for which there were nil or very large incurred 
movements.
29 A simple approach of adjusting a correlation matrix to remove this lack of consistency is 
outlined in Appendix 9.7. The algorithm corrects an invalid correlation matrix and creates a semi-
positive definite one instead.
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5. Selection of a dependence structure 

Generally, specifying a correlation coefficient is not sufficient to fully determine the 
dependence between two (or more) variables. Some approaches that seem to do this, 
implicitly assume some copula family (eg. the Iman and Conover Technique uses a 
Normal copula), which takes the correlation and specifies a particular dependence 
function. It is important that actuaries and other practitioners, who model dependencies, 
are aware of such implied structures and preferable that they have the ability to choose 
the best dependence structure for a particular situation.

Copulas were introduced in chapter 3 by giving a high level generic definition, which I 
believe is sufficient for the purpose of this discussion. There are a number of 
publications that give a detailed definition of copulas and their different families that offer 
a more theoretical background on this topic. Some of these are listed in the Bibliography.

In this chapter, I focus on a family of elliptical copulas and also describe an approach 
that can be used in assessment of the choice of dependence structure. 

5.1 Characteristics of elliptical copulas

5.1.1 Overview

This family of copulas is based on elliptical multivariate distributions. These elliptical 
copulas are uniquely determined by their correlation matrix and knowledge of their 
type.30

There are two copulas in this family the Gaussian (Normal) copula and the t-Student 
copula. In terms of the notation, these copulas have the following forms:

 Normal copula (a copula of the n-dimensional normal distribution n
L  with linear 

correlation matrix L)
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where 1  denotes the inverse of the distribution function of the univariate standard 
normal distribution.

 t-Student copula (a copula of the n-dimensional t-distribution with   degrees of 

freedom n
L,  with linear correlation matrix L)
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where 1t  denotes the inverse of the distribution function of the univariate standard t-
Student distribution with   degrees of freedom.

                                               
30 The proof of this statement comes from the necessary conditions for the uniqueness of an 
elliptical distribution (i.e. its mean, covariance matrix and knowledge of its type). For more 
detailed discussion refer to Embrechts, Lindskog, McNeil [7].
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5.1.2 Properties

As in the previous sections, the discussion in this chapter is in the context of practical 
approach to diversification in general insurance. There are several reasons why elliptical 
copulas fit well in this framework.

Firstly, they are fast and easy to implement in practice. I have included in Appendices 
(9.3 and 9.4) details on simulation algorithms, which can be successfully programmed in 
VBA or other programming languages. In practice this is a very important feature, as not 
all families of copulas can be easily programmed - especially for the multivariate case 
(more than two variables).

These copulas are easily parameterised by a linear correlation matrix, which can be 
obtained from a rank correlation matrix using the transform formulae introduced in 
section 4.3.4.

They are easily extended to the multivariate case. We can use them to model any 
number of modelling classes in a portfolio without any loss of parameterisation (note that 
for n classes, there are n(n-1)/2 correlation coefficients). This is not true, for example, for 
Archimedean copulas, for which the number of parameters is reduced to n-1. This added 
flexibility makes elliptical copulas especially useful in large, multi-class portfolios, where 
more than n-1 parameters are required.

The flexibility of this family of copulas is further enhanced by the fact that they can 
produce dependence structures with tail dependence. This is true for t-Student copulas, 
for which we can control this property for a given correlation matrix by the choice of the 
number of degrees of freedom. In particular, the lower the number of degrees of 
freedom, the stronger the tail dependence is. On the other hand, as the number of 
degrees of freedom tends to infinity, a t-Student copula becomes more like a Normal 
copula with no tail dependence at all. 

There are also several other properties, which are not necessarily advantages, but are 
very important in practical applications. These are:

 Only a Normal copula parameterised by nil correlations can produce independent 
outcomes (this cannot be achieved with a t-Student copula).

 Elliptical copulas only exist for linear correlation coefficients taking values in (-1,1). 
This constraint means that it is impossible to perform simulations using a perfect-
correlation assumption (all of the correlation coefficients are equal to 1)31. 

 Elliptical copulas, by their construction, are symmetrical. This means that in case of t-
Student copulas, they have both upper and lower tail dependence.32

                                               
31 Elliptical copulas require the correlation matrix to be strictly positive definite. Otherwise their 
construction is not possible. One could check that a perfect positive correlation matrix does not 
satisfy this condition (ie the Cholesky decomposition does not exist). In practice, this problem can 
be overcome if we simulate a single sample of random numbers (uniforms) and then use them for 
all modelling classes.
32 Refer to chapter 3 for a definition and to chapter 6 for an example, which presents the impact of 
tail dependence on a portfolio.
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5.2 Copula selection criteria

So far, in the discussion on copulas I have only looked at so-called parametrical copulas. 
They are based on prescribed forms and usually have well-studied properties. However, 
the question of which of them is best for a particular situation is still open.

In practice, there are several approaches available to assess goodness-of-fit of the 
selected parametrical copula. For example, Durrleman, Nikeghbali and Roncalli [5] give 
a good overview of such methods. In this paper, I describe one of them, which relies on 
comparison of parametrical copulas with an empirical copula.

5.2.1 Empirical copula

An empirical copula (or dependence function) reflects the dependence between 
variables based on the actual data. It can be interpreted as the dependence equivalent 
of an empirical distribution function.33

In particular, for a bivariate sample (xi,yi), i=1, …, n an empirical copula can be derived 
using the following formula:
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where # denotes the cardinality of a set (ie. a measure of the number of elements of the 
set34), x(j) and y(k) (for 1 ≤ j and k ≤ n) denote order statistics from the sample. The 
numerator is just the number of data points, which lie to the left of and below the point
(x(j), y(k)), where x(j) is the jth smallest value of the x sample and y(k) is the kth smallest 
value of the y sample. This can be illustrated by a graph shown below.

X

Y

(X(j),Y(k))

                                               
33 In fact, if we transformed the marginal distributions into standard uniforms the empirical copula 
would be just the empirical joint distribution for the given data set.
34 For more detail see http://en.wikipedia.org/wiki/Cardinality
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The above formula allows us to calculate an empirical copula for a given sample. In 
practice, we would do it according to the following process:

1. Sort  the observations (ie. incurred claim movements) for each of the individual 
classes separately. This produces vectors of the order statistics.

2. For each of the order statistics calculate the number of original data points (prior to 
sorting) that are simultaneously equal or smaller in each of the dimensions.

3. Normalize the calculated counts of data points by dividing them by the total number 
of observations.

The best way to visualize the product of the above calculation is by considering a 
sample, which consists of two dimensions with n observations in each of them. In this 
situation, the empirical copula would be calculated for each of the nxn points creating a 
surface in a 3-dimensional space.

The above method is easy and fast to use. If we had enough data points in the space of 
outcomes we would be able to create a complete empirical dependence structure. 
Rather than using parametrical copulas in a simulation process, we could then use an 
empirical copula with its values read from a pre-determined table of normalised counts of 
data points. Such an approach would allow us to reconstruct the overall statistical 
pattern of the dependence in the joint distribution.

However, there are three major practical problems with the above approach:

 In order to create a complete empirical dependence structure, we would have to 
have visibility of all possible outcomes, which is simply unrealistic (particularly in the 
tail of distributions).

 If we use the empirical copula in assessment of parametrical copulas (as described 
below), we face a problem of different universes (lattices35).

 The more classes we have in our portfolio, the more data points are required.

 Besides, even if we had such a full dataset, there is still an issue with future 
dependence vs. past dependence.

In regards to the last point, actuaries typically assume that past patterns will prevail and 
serve as a good approximation of the future (subject to their professional judgement). 
One could argue that this is also the case for dependencies.

Although the above arguments are valid and need to be kept in mind, there are some 
ways of overcoming these difficulties (eg. by aggregating some of the classes, ranking 
data etc.).

                                               
35 A lattice is a partially ordered set, in which all nonempty finite subsets have both a supremum 
(the least upper bound) and an infimum (the greatest lower bound). More in-depth definition can 
be found at http://en.wikipedia.org/wiki/Lattice_(order)
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5.2.2 Copula selection

There are a number of methods, which can be used to help select the best parametrical 
copula (eg. a t-Student copula etc.) for a given portfolio. Durrleman, Nikeghbali and 
Roncalli [5] give a good overview of the available techniques for selecting copulas, 
splitting them into two main groupings: parametric and non-parametric methods. Suitable 
techniques depend on the available software, available data and preferences of the 
user. In case of the first group (as classified by the authors), the methods are statistical 
and are based on estimation of copula parameters. The second group of methods is 
based on various empirical measures calculated directly from the data.

In terms of the efficiency of the available methods, it is hard to decide which of them is 
best for general insurance applications. All of them are potentially prone to material
errors as available data is usually scarce.

The method, which I suggest for the purpose of this paper, is based on the empirical 
copula (and would appear under the non-parametric group). In general, we want to 
select the parametrical copula, which is closest to the empirical copula.

For a given portfolio, the approach can be summarized in three steps as follows:

I. Derive the empirical copula:

1. For each of the classes, aggregate incurred movements by origin years and 
developments (if there are many modelling classes, consider aggregation to a 
higher level).

2. Apply the empirical copula algorithm (described in the previous section).

3. Rank the actual data, so it is not dependent on the absolute values and pair it 
with the empirical copula values.

II. Derive parametrical copulas36:

1. Using the simulation algorithm for a given copula and selected/estimated 
assumptions (i.e. marginal distributions, correlation matrix) generate correlated 
observations for each of the classes.

2. Apply the empirical copula algorithm (described in the previous section).

3. Rank the simulated outputs, so they are not dependent on the absolute values 
and pair them with the derived pseudo-empirical copula values.

III. Calculate the distance between the empirical copula and parametrical copulas:

1. Calculate sum of squared differences between the empirical copula values and 
corresponding parametrical outcomes for all matching rank vectors.

2. Calculate the root of the sum of errors for each of the tested parametrical copulas 
and select the one, which gives the smallest value.

Mathematically, the above problem can be specified as selecting a copula Param
TC )(  that 

minimizes 2)
)( L

EmpParam

T
CC  on the discrete L2 norm. In this context, following Deheuvels 

                                               
36 This step is particularly important for elliptical copulas, as they do not have a closed 
multivariate form. For other families like Archimedean copulas, we could simply use their 
multivariate representation.
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6. Analysis of a diversification benefit

This chapter covers the last four steps of the diversification selection process. In 
particular, I look at implications of various assumptions/considerations on overall 
diversity levels and also review important aspects of the analysis.

6.1 Capital adequacy applications

Throughout this paper, I have generally taken the risk margin as the example of where 
diversity analysis is used. This was done to satisfy interests of actuaries who are primary 
concerned with the 75% probability of sufficiency. However, it is increasingly necessary 
to assess insurance liabilities at other (generally higher) levels of sufficiency (eg. 99.5% 
confidence level for run-off portfolios or the calculation of Risk Based Capital).

In this context, the methods and points presented in this paper create a foundation for 
the analysis of diversification benefit at various confidence levels.

This chapter focuses on the important considerations that must be taken into account at 
the final stages of the diversification selection process. In particular, I have included 
graphical/numerical examples, which give an insight into changes in diversity at different 
percentiles.  

6.2 Diversification at different confidence levels

At the beginning of this paper, I defined diversification benefit as the difference between 
the undiversified figure and the diversified figure (expressed as a percentage of the 
undiversified value).

Apart from the technique described above, another useful measure is how the diversified 
figure relates to two boundaries. A lower bound is specified by the independence case 
(assuming a Normal copula with nil correlation) and an upper bound by the perfect 
dependence case.

In the context of these two measures, it is particularly interesting to understand how the 
diversification benefit changes over various confidence levels.

Practitioners quite often assume that the diversification benefit stays constant regardless 
of the confidence level. However, this is incorrect. The lower bound, the selected 
dependence and the upper bound have different distributions that intersect or overlap 
each other at various confidence levels. This can be best represented by the two graphs 
below that show joint CDF’s and joint PDF’s for a portfolio consisting of two classes 
(each with a lognormal distribution37) produced using a Normal copula.

                                               
37 The classes have means of 25,000 and 10,000 with coefficients of variation of 80% each. The 
linear correlation assumed is 50%.
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In particular, we can see in more detail how diversification benefit changes between the 
60th percentile and the 99.9th percentile in the following table. 
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Percentiles Independence
Selected 

dependence
Perfect 

dependence
Range-
through

Diversification 
benefit

60th Perc. 34,141 33,648 32,710 34% (3%)
70th Perc. 39,638 39,837 39,519 (167%) (1%)
75th Perc. 43,092 43,834 43,923 89% 0%
80th Perc. 47,156 48,642 49,524 63% 2%
85th Perc. 52,485 54,675 56,587 53% 3%
90th Perc. 60,162 63,789 67,100 52% 5%
95th Perc. 74,596 80,732 86,938 50% 7%
97.5th Perc. 90,208 98,939 108,356 48% 9%
99.5th Perc. 131,852 146,765 168,355 41% 13%
99.9th Perc. 194,263 209,960 257,277 25% 18%

Quite often, practitioners are not aware of this fact and assume the same diversification 
benefit for all percentiles. This may lead to either overestimation or underestimation of 
the final result. It all depends on the actual position and shape of the joint probability 
distributions for each of the cases.

Additionally, the above example also highlights how dangerous it is to apply a fixed 
benchmark diversification benefit to various portfolios. 

This method was applied by Bateup and Reed [1]. The authors derived a simple (“rule of 
thumb”) formula:

Diversification Discount = 59% x (1-C)

where C was a coefficient of concentration (defined as net outstanding claims liability for 
largest line of business divided by total net outstanding claims liability).

The authors argued that this “rule of thumb” could be applied to an average industry 
portfolio. The example above highlights the danger of applying such a formula blindly. In 
the example the actual diversification benefit is effectively 0%, which compares to 17% 
(as suggested by the formula). The difference is apparent and practitioners should be 
aware. The diversification benefit depends on a number of factors and one can imagine 
situations where the difference is even larger.

6.3 Impact of individual class assumptions

There are a number of assumptions, which accompany the selected marginal 
distributions. Some of them can be allowed for directly in the individual class models (so 
they are incorporated in the shape of the marginal distributions), others need to be 
explicitly modelled at the portfolio level.

The following assumptions/items should be considered, while assessing diversification 
benefit:
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 Aggregate limits. These refer to either analytical (derived using some analysis) or 
actual (based on the contract/policy information38) total exposures. Especially in 
regards to the latter case, it is sometimes practical to judgementally adjust these 
limits, so they are not unrealistically high (some covers may have no limits, which 
would have a dramatic impact on the top percentiles).

 Discounting. In the context of Australian regulations, this is generally not an issue at 
the 75th level of sufficiency. However, one could imagine that if a portfolio 
experienced a 99.5th scenario then the discounting profile could change quite 
considerably and affect various percentiles to a different extent.

 Exchange rates. This issue is particularly important for multi-currency portfolios, for 
which a movement in exchange rates can create a second order effect on diversity 
as the relative sizes of sub-portfolios shift.

 Reinsurance/retrocession arrangements. These usually are allowed on the individual 
class level. However, there might be some aggregate programs (eg. catastrophe 
arrangements), which cover a part or the total portfolio. In these cases, it is important 
to allow for them in the diversification analysis, as they may have a significant 
impact.

 Non-reinsurance recoveries (eg. subrogation, salvage). These generally relate to 
direct insurance and usually are allowed on the individual class level. Depending on 
materiality, they may have an impact on the relative sizes of various classes, and so 
on the overall diversity.

 Reinstatement premium39 and other contract-specific upside items. Especially in 
case of reinsurance portfolios, it is possible to calculate a reinstatement premium as 
on offsetting item for insurance liabilities. However, this approach also has to take 
into account diversification. Otherwise, we could end up with inconsistent approach 
and too much upside.

The above list is not exhaustive. All portfolios have their own different characteristics and 
there will be circumstances, where other features also need to be taken into account.

Generally, each of the suggested assumptions has a direct impact on the diversified and 
the undiversified figure. Practitioners should be particularly careful when the relative 
sizes of individual classes are affected, as this situation usually leads to a shift in the 
overall diversification benefit. 

6.4 Impact of changes in dependence structure

There are two major factors that influence the diversification benefit from the modelling 
perspective: correlations between classes and a dependency structure. The impact of 
these two assumptions usually exceeds all other allowances. Practitioners who assess 
risk should be looking at sensitivity and scenario testing of not only the correlation 
assumptions, but also the dependence structure.

                                               
38 In regard to inwards reinsurance classes, the total exposures would be given by contract limits. 
In terms of direct insurance lines of business, we would consider sums insured or indemnity 
limits. Both of these could further adjusted in order to allow for individual-class outwards 
reinsurance protections. This would depend on our approach to individual-class assumptions 
(distributional and variability based either on gross or on net of reinsurance basis).
39 Applies to inwards reinsurance portfolios.
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In the table below, I included results for a portfolio consisting of ten classes. The figures 
were produced using five different dependence structures and the same correlation 
matrix. The upper part of the table shows absolute values of various percentiles, while 
the bottom part presents values of the top percentiles (75th and higher) relative to 
Normal copula as a base.

t-Student t-Student t-Student t-Student Normal

Statistics df = 3 df = 10 df = 15 df = 25

Mean 318.8 318.8 318.8 318.8 318.8
St. Dev. 163.1 158.5 158.3 157.7 156.5

5th Perc. 141.3 138.3 137.9 137.5 137.4
10th Perc. 167.3 163.3 162.6 162.2 161.4
25th Perc. 215.9 212.6 212.1 211.6 211.0
50th Perc. 282.7 284.2 284.3 284.5 284.9
75th Perc. 376.0 383.6 385.2 386.2 387.8
95th Perc. 615.0 614.8 617.4 618.6 619.9
99.5th Perc. 1,090.2 1,009.8 999.5 985.9 961.9
99.95th Perc. 1,612.0 1,433.7 1,395.4 1,349.8 1,302.8
99.97th Perc. 1,709.5 1,519.8 1,477.5 1,456.2 1,373.8
99.99th Perc. 1,886.9 1,673.0 1,633.1 1,581.4 1,491.1

75th Perc. 96.97% 98.92% 99.33% 99.61% 100.00%
95th Perc. 99.20% 99.18% 99.59% 99.78% 100.00%
99.5th Perc. 113.35% 104.99% 103.92% 102.50% 100.00%
99.95th Perc. 123.74% 110.05% 107.11% 103.61% 100.00%
99.97th Perc. 124.44% 110.63% 107.55% 106.00% 100.00%
99.99th Perc. 126.54% 112.20% 109.52% 106.05% 100.00%

Each of the columns presents different dependence structure and so a different impact 
of tail dependence.40 The far left figures include most of the tail dependence, while the 
output from a Normal copula does not include any tail dependence.

It is important to understand that the tail dependence is not a linear function. For 
example if we compare any two columns, we can see how the differences either widen 
or narrow as we move between percentiles. As expected, the biggest gap can be 
observed for the most extreme probability. The reader will also notice that the joint 
distributions intersect just above the 95th percentile.

The table clearly suggests that practitioners cannot ignore selection of the dependence 
structure. A simple sensitivity test, as shown above, gives a great insight into the 
financial impact of the selected copula. The tail dependence might be less important in 
the context of the risk margin. However, its significance increases if one considers 
capital adequacy (eg. 99.5th percentile and higher). In particular, the reader can see that 
the difference between copula outputs (comparing to the Normal copula) is at most -3% 
at the 75th percentile. At the 99.5th, this gap increases to between +2.5% and +13.4%.

                                               
40 Refer to chapter 3 for definitions.
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The presented numbers can also be assessed in the context of perfect dependence and 
perfect independence cases. This can give further insight into the overall range of 
possible outcomes.

6.5 Incremental analysis

In the analysis of diversification, it is also important to understand how much each of the 
classes contributes to the overall diversified figure. If we only look at the marginal 
distributions, we may quite easily lose sight of the bigger picture. This is especially true if 
there are many classes involved and the marginal distributions have different shapes. 

Each of the classes contributes to the overall diversified number in two ways:

 Through their individual variability (if we add an independent risk to a portfolio then 
the overall standard deviation increases due to this risk’s variance contribution).

 Through dependence (if we add a risk, which is correlated with other classes within 
the portfolio, then the overall standard deviation increases not only due to the 
variance, but also due to the covariance contributions) 

One way to investigate the above issue is to perform a so-called “incremental analysis”, 
where we exclude each of the risks (one at the time) and see the size of the impact on 
the portfolio diversification.

As in the case of diversification benefit, the diversified contributions for a particular class 
differ between various percentiles. This is mainly due to the shape of its distribution. 
However, other assumptions like tail dependence, correlation, aggregate limits and etc. 
also may have a significant influence. Given that, a simple linear interpolation between 
confidence levels usually does not give the correct approximation. 

This analysis can be especially useful if we want to commute or simply remove (for a 
separate treatment) various parts of the portfolio. Additionally, we may also use this 
approach as an overall reasonableness check to see if any of the classes do not stand 
out or do not look sensible.

6.6 Selection criteria

In the final stage of the analysis an actuary has to decide on the total diversified figure. 
The decision is highly uncertain and, even if we have done all of the steps of the 
analysis, we still may have some doubts about the selection. This problem becomes 
even more complex if we are dealing with higher than 75% probabilities of sufficiency.

This is why it is very important to perform sensitivity and scenario testing. This can be 
done both at individual-class and at portfolio level. The analysis may not give us the 
required single answer, but it certainly helps to see possible upsides or downsides of our 
approach. On the other hand, this may serve as a base for any outside model 
adjustments (for a modelling and parameter error41, for specific risks not captured by the 
approach, etc.) 

                                               
41 It is theoretically possible to allow for a parameter error in the modelling, albeit not discussed 
here.
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In terms of diversity, we have to analyse the main factors driving correlations and the 
dependence structure. This can be done through sensitivity and scenario testing. The 
empirical copula (or an equivalent method) may also serve as an overall check, since it 
looks at the overall dependence pattern of the actual data and not only at correlations.

6.7 Allocation of diversity

It is usually required by reporting standards to allocate diversified results down to the 
class level42. In practice, there are several approaches available to deal with this task 
and a separate paper can be written to analyse their advantages and disadvantages. 
Whilst such a discussion is not the main focus of this paper, due to its sufficient 
importance I included a brief consideration of diversity allocation in this section.

Some of the most common methods to allocate a diversified figure (eg. the risk margin 
or a particular diversified increment above the mean43) are:

 Allocation in proportion to individual means (best estimates). This approach is 
probably the fastest, but it may also be the least correct of all. In particular, it does 
not allow for both the dependencies between classes and individual class variability. 

 Allocation based on the incremental analysis (as outlined above). In some situations 
(eg. commutations), this approach might be the most appropriate. However, it is 
time-consuming.

 Allocation based on undiversified increments above the mean. This method is better 
than allocation by means (as it allows for inherent risks within individual classes) and 
is usually very fast to apply. However, it does not allow for any dependencies 
between classes.

 Allocation based on the Myers-Read method44. This method became very popular 
after it was published. However, there is a growing criticism of its assumptions.

 Various allocations based on option valuation formulas (eg. the insolvency exchange 
option45). These methods are reasonably new and prove to be much more adequate 
than other older methods like the Myers-Read method.

One could derive many other methods based on various risk measures. However, the 
reader must be aware of any deficiencies and select an approach that is reasonable for 
a particular application.

In this paper, I describe one of my preferred methods (in its two variations) that can be 
used in practical applications and is not included in the above list. This approach uses a 
particular type of the risk measures called co-measures46 and was initially introduced in 

                                               
42 For example in Australia, Prudential Standards and Guidance Notes (GGN210.1) require 
actuaries to report insurance liabilities for each class of business specified by APRA. This 
includes allocation of the risk margin.
43 The diversified increment above the mean is just the difference between a percentile of the joint 
distribution and the mean of that distribution (sum of the marginal means).
44 Refer to Mildenhall [13] to see advantage and deficiencies of this method in practical 
applications.
45 Refer to Sherris [15] for more details on this methods
46 The definition of co-measures is outlined in Appendix 9.8, for more detailed reading refer to 
Kreps [11].
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the context of capital allocation. The co-measures have two main advantages. They 
encompass positive properties of the above methods (eg. they are sensitive to the 
probability of default like the option valuation formulas). Additionally they are also easy 
to apply in simulations.

Let’s assume that we have a portfolio X consisting of X1, …, Xn classes (each of the X’s
relates to best estimates of outstanding losses47). Then we can define two statistics:

 A tail Value-at-Risk (“VaR”) such as  PXXEXTVaRP  /)(  and

 A co-measure-based tail VaR such as  PXXEXTVaRCo iiP  /)(

In the above notation, P relates to a given percentile for the total portfolio (for the risk 
margin assessment, this is equivalent to the 75th percentile). The method generally 
works fine and can be easily used in simulations. However, there is one downside. If we 
want to allocate the portfolio risk margin then it will allocate part of it to individual losses, 
which have no variability (the estimate of losses is constant). 

The above problem is overcome by excess tail VaR. For the portfolio X, we have:

 An excess tail VaR such as  PXmXEXXTVaRP  /)(  and

 A excess co-measure-based tail VaR such as

 PXmXEXXTVaRCo iiiP  /)(

In the above, m and mi refer to means (best estimates of outstanding losses). 

In most of the cases the first approach works fine, however if we deal with a portfolio, 
which does have some fixed losses then it is necessary to use the second method48.

6.8 Important Caveats

There are a number of caveats, which need to be kept in mind by the reader while using 
the approaches outlined in this paper. In most cases, I have highlighted any possible 
flaws or problems throughout the text. However, there are other ones, which I present in 
this section.

Most of the issues, which are related to the presented methods, lie at the heart of the 
projection process itself. Others are due to the limitation imposed either by software or 
other sources.

I believe that the following caveats must be kept in mind:

                                               
47 Note that in a simulation approach, these would refer to simulated losses. In particular, if we 
had 50,000 simulations this would produce 50,000 vectors of individual-class losses.
48 We could extend this approach even further by adjusting probabilities, so that larger losses 
receive increasingly larger weights. In this case, the co-measure could be called a weighted 
excess TVaR (“WXTVaR”).
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 Any technique used to model real-life processes is only an approximation. As such, 
the methods cannot replicate future events with certainty. 

 Actual data is generally limited, which makes any estimation difficult and possibly 
incorrect. Judgement needs to be used to assess any estimates.

 The past experience may not repeat in the future. This is true for most (if not all) of 
the assumptions including correlations, the dependence structure and assumed 
distributions for individual classes. The time-wise stability of all of the above must be 
considered in detail. In particular, practitioners should be mindful when using non-
parametrical methods (eg. simulating from an empirical copula, bootstrapping etc.). 
These approaches usually apply past patterns to the future automatically without any 
flexibility.

 The past experience is very likely to represent only part of the total distribution of 
outcomes. In this sense, if we are estimating liabilities at extreme probabilities of 
sufficiency, we may not have any actual observations at this level. 

 The results obtained for one portfolio (eg. correlation matrix, dependence structure 
etc.) are usually not appropriate to other portfolios. Practitioners need to keep this in 
mind when using any pre-determined assumptions. 

 Various simulation procedures rely on randomly generated numbers. In the context 
of any simulation algorithm presented in this paper, random numbers are actually 
pseudo-random numbers.

 Any simulation approach is prone to a random error, especially if we are interested in 
calculating extreme confidence levels. In general, results do converge with increased 
number of simulations, however in order to obtain a stable 99.5th percentile we need 
a much larger output sample than for a 75th percentile. 
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7. Summary and Conclusions

The main purpose of this paper is to suggest a general approach to diversification, which 
can be readily adopted in practice. In particular, practitioners could use an Excel 
spreadsheet supported by VBA to implement all of the steps of the approach.

The described framework is quite general and although there are a number of methods 
suggested for each stage, the reader should be aware of their limitations and consider 
alternative approaches if available. In practice there is usually no single correct formula, 
which applies to all circumstances.

The paper also focuses on a number of important considerations, which should be taken 
into account while assessing diversity. In particular, I have included quite detailed 
discussion of assumptions on both individual-class (eg. marginal distributions, aggregate 
limits, exchange rates etc.) and portfolio level (eg. dependence structure, correlations 
etc.), which have a direct impact on the diversification benefit. 

Additionally, the paper also looks at a number of common myths and misinterpretation 
commonly committed by practitioners. All of those should be well understood and 
avoided in practical modelling.

It is also important to note that although this paper discusses diversification in the 
context of general insurance, some or all of the concepts can easily be extended to other 
areas of insurance, finance or, even, engineering.

Practitioners should bear in mind that existing methods are not entirely studied nor 
widely understood. This is especially true in regards to the assessment of dependence 
structures. This paper describes use of the elliptical copulas, which are valued for their 
properties. However, there are many other families available and one could use them 
instead.

There is also a big gap in copula assessment methods. The described empirical copula 
approach is one of many and, as pointed out, it has its limitations. The main problems 
when dealing with a copula selection in general insurance are multidimensionality and 
scarcity of data. In general, none of the existing methods properly addresses these 
issues. 

In contrast, the profession and academics have done quite a lot of study on loss 
distributions. As a result, many actuaries quite often assume lognormal distribution for 
outstanding claim losses in their analysis of various sufficiency levels. This assumption 
is almost treated as a standard/base from which one can deviate in case of existing 
evidence.

In my view, the same study should be done in terms of dependence. There might be 
sufficient evidence to justify a particular copula or a family of copulas that is the most 
appropriate for general insurance applications. If this cannot be achieved then at least 
more reliable methods of copula assessment should be derived.
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9. Appendices

9.1 Overview of a general simulation approach

This section may be less interesting to practitioners who are familiar with simulations. It 
might be however useful for others who are new to this topic and want to apply some of 
the ideas presented in this paper.

A general approach to generate random numbers from a given distribution )( ixF  can 

be outlined as follows:
1. Using some random-number generator produce a set of uniformly distributed 

variates (“uniforms”) u1, …, un ~ U(0,1).
 This can be done using an Excel function RAND()49 or some other algorithms.
 The uniforms u1, …, un are generally uncorrelated and independent (note that 

some algorithms may create dependent samples). 

2. Using inverse transform )(1
ii uFu   obtain a sample from the given distribution.

 For some distributions, this can be done directly using their CDF eg. Pareto, 
Exponential etc.

 For other distributions, a numerical calculation needs to be done by integration of 
the density function.

 Some distributions like Normal or Lognormal are standard functions in Excel.

In some cases instead of generating random uniforms one needs to generate random 
variates, which are standard normally distributed (“normals”) ie. ~ N(0,1). This is 
particularly true for application of elliptical copula algorithms (as shown below). The 
reader should be aware that there have been a number of algorithms developed which 
allow generating random normals.

If the reader wants to simulate n dependent samples, then a copula (or some equivalent 
method) must be used in the simulation algorithm. The obtained dependent uniforms can 
be then utilised in the second step of the above process.

9.2 The Iman and Conover algorithm50

The algorithm for the Iman and Conover technique can be outlined as follows:

1. Using marginal distributions generate N values (draws) for each of the classes and 
store them in a matrix X (record values for each class in columns).

2. Estimate or assume pair-wise rank correlations between individual classes ij  and 

record them in a matrix T (the input rank correlation matrix for a transformation of the 
columns of X). Note that T needs to be positive definite and symmetric.

                                               
49 The reader should be aware of documented drawbacks of this function.
50 This algorithm is consistent with the original work presented by the authors. An application of 
this method can also be found in Hart, Hayes and Babcock[8]
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3. Generate a matrix R of the same size as X that contains van der Waerden scores  
(Φ-1(i / N+1), where Φ-1 is the inverse of the standard normal distribution function, N
is the number of draws, and i = 1, ..., N).

4. Randomly shuffle van der Waerden scores within each of the columns, so that R has 
a correlation matrix I (identity matrix). 

5. Find the Cholesky decomposition for T such that T = PPT (where P is a lower 
triangular matrix).

6. Create a transformed score matrix R* = RPT (where columns of R* have a rank 
correlation matrix M, which approximates to the input rank correlation matrix T).

7. Sort elements of X so they are arranged in the same ranking as in R* (the columns of 
the transformed X matrix will also have a rank correlation matrix equal to M).

8. Matrix M only approximates matrix T. This is due to the random simulation error that 
affects the correlation matrix of R (ie. it is not an identity matrix). The authors of the 
method suggested applying a variance reduction procedure in order to minimize 
deviations between M and T. According to this procedure, we need to find a matrix 
M*, which is closer to T than M. The algorithm is as follows:

i. Let J represent the actual correlation matrix for the columns of R.51

ii. Let T represent the input correlation matrix.

iii. Find for T a matrix S such that T = SJST.

iv. Find Cholesky decomposition for both matrices T and J (both are positive 
definite and symmetric matrices) such that J = UUT and T = VVT. So VVT = T
= SJST = SUUTST. This implies that S = VU-1 (where U-1 is the inverse of U). 

v. Calculate the transformation RST and note that the columns of RST have a 
rank correlation matrix that is equal to M*. The matrix M* provides a better 
estimate of matrix T than M does.

9. Sort the original values from the marginal distributions (the columns of X) so they 
match ranks with the data in the columns of RST (the rank correlation matrix of the 
sorted original values is equal to M* and approaches the input rank correlation matrix 
T).

10. The sum of each row represents the total loss for the portfolio. The diversified 
percentile can be calculated based on the row totals.

9.3 Normal copula algorithm

Let’s assume that we have a portfolio X consisting of X1, …, Xn classes with marginal 
distributions F1, …, Fn and a linear correlation matrix R. 

Then the following algorithm can be applied to produce correlated outcomes:
1. Generate n independent variates z1, …, zn from N(0,1).
2. Find the Cholesky decomposition A of R.

3. Set x=Az.
4. Set ui= Φ(xi) for i=1, …, n.

                                               
51 Note that in theory J would be equal to I. However it is not the case due to the random error.
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5. u1, …, un is just a vector of correlated uniforms from a Normal copula.
6. Use an inverse transform ui → Fi

-1(ui) for i = 1, …, n to derive simulated losses for 
each of the classes (if we run 50,000 iterations of this algorithm then we obtain 
50,000 vectors (F1

-1(U1), …, Fn
-1(Un)) of simulated losses).

9.4 t-Student copula algorithm

Let’s assume that we have a portfolio X consisting of X1, …, Xn classes with marginal 
distributions F1, …, Fn and a linear correlation matrix R. 

Then the following algorithm can be applied to produce correlated outcomes:
1. Generate n independent variates z1, …, zn from N(0,1).
2. Generate a variate s from 2

v  independent of z1, …, zn .

3. Find the Cholesky decomposition A of R.

4. Set y=Az.

5. Set x=
s

v
y.

6. Set ui= tv(xi) for i=1, …, n.

7. u1, …, un is just a vector of correlated uniforms from a t-Student copula with v
degrees of freedom.

8. Use an inverse transform ui → Fi
-1(ui) for i = 1, …, n to derive simulated losses for 

each of the classes (if we run 50,000 iterations of this algorithm then we obtain 
50,000 vectors (F1

-1(U1), …, Fn
-1(Un)) of simulated losses).

9.5 Multivariate Normal distribution

If x is a n-vector and x~N(, ), then the joint pdf is





   )()(

2

1
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9.6 Two-stage correlation example

st dev (A) 20,000             
st dev (B) 8,000               
st dev (C) 15,000             

A B C
corr(A,B) 0.7 A 1 0.7 0.7
corr(A,C) 0.7 B 0.7 1 0.2
corr(B,C) 0.2 C 0.7 0.2 1

Cov(A,B) 112,000,000    =stdev(A)*stdev(B)*corr(A,B)
Cov(A,C) 210,000,000    =stdev(A)*stdev(C)*corr(A,C)
Cov(B,C) 24,000,000      =stdev(B)*stdev(C)*corr(B,C)

Cov(A,B,C) 1,381,000,000 =var(A) + var(B) + var(C) + 2*( cov(A,B) + cov(A,C) + cov(B,C))
CombVar(B,C) 337,000,000    =var(B) + var(C) + 2*cov(B,C)
Cov(A,(B,C)) 1,251,011,673 =var(A) + CombVar(B,C) + 2*stdev(A)*sqrt(CombVar(B,C))*corr(A,B)  [or '*corr(A,C)']

sqrt(cov(A,B,C)) 37,162             <--- standard deviation for the one-stage correlation approach
sqrt(cov(A,(B,C)) 35,370             <--- standard deviation for the two-stage correlation approach

Note:
The difference becomes bigger if:
corr(B,C) becomes lower
corr(A,C) and corr(A,B) become bigger

Linear correlation matrix

Assuming A,B and C have normal distributions.

Variance of the product of the 1st stage 
correlations

Variance of the product of the 2nd stage 
correlations

9.7 Positive semi-definiteness correction formula

In general, an inconsistent correlation matrix can be uncovered by application of the 
Cholesky decomposition52. A matrix is not positive semi-definite if one of the eigenvalues 
drops below zero.

The following algorithm can be used to adjust an inconsistent matrix:

1. Find the smallest eigenvalue λ0 (note that λ0 is negative and the Cholesky 
decomposition algorithm falls over at this point).

2. Adjust the eigenvalues so that the smallest eigenvalue equals zero by adding the 
product of - λ0 and the identity matrix I to the correlation matrix R. So the modified 
correlation matrix R' = R - λ0I.

3. Divide R' by (1 - λ0) so the resulting matirx R'' = 1/(1 - λ0)R' (this normalizes the 
overall matrix and brings the diagonal values back to 1)

                                               
52 The Cholesky decomposition requires the correlation matrix to be strictly positive definite. The 
method presented here creates a positive semi-definite matrix. In order to use it in the Cholesky 
decomposition a further adjustment needs to be made to obtain a positive definite matrix (eg. by 
changing particular entries in the matrix). 
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4. This new R'' matrix is positive semi-definite (i.e at least one of the eigenvectors is 
zero and others are greater than zero), and can be used in further calculations.

This method adjusts the whole correlation matrix and can be used iteratively until the 
problem is removed. Alternatively, one could adjust a single coefficient of correlation 
(keeping the overall symmetry of the matrix); which causes the problem. The selected 
approach depends on the user.

9.8 Definition of co-measures

A co-measure can be defined for any risk measure that is expressed in terms of a 
conditional expected value. In particular, if we have a risk measure R(X) for a risk X with 
mean m such that:

 nditionam)f(x)/co(XER(X)  , for some value a and function f.

Then given that X is the sum of n Xi’s (each with mean mi), the co-measure for Xi is:

 ition)f(x)/condam(XE)R(X-co iii  , where the condition is the same as for X.

Using the fact that expectations are additive, the sum of individual co-R’s of the n Xi’s is 
R(X).

9.9 Examples of correlation and dependence myths53

The below examples refer to section “4.1 Pitfalls and misinterpretations”.

Example of point 1.
Let’s consider discrete distributions  (X, Y, Z) such as:

X Y Z Probability
1 1 3 0.25
1 2 3 0.25
3 2 1 0.25
3 1 1 0.25

The relationships between X and Y, Y and Z and X and Z can be presented as 
follows:

0

1

2

3

0 1 2 3

X

Y

0

1

2

3

0 1 2 3

X

Z

0

1

2

3

0 1 2 3

Z

Y

                                               
53 A useful list of examples (including the ones presented in this section) can be found at 
http://www.ramas.com/wttreprints/Myths.pdf
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The above diagrams show, that although X and Y and Y and Z are independent – X 
and Z are perfectly negatively dependent.

Example of point 2.
Let’s consider variables X and Y. The relationship between them is as shown on the 
diagram. There is a clear dependence between the variables, although the 
correlation coefficients are nil.
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Example of point 3.
As in Example of point 1, let’s consider discrete distributions  (X, Y, Z) such as:

X Y Z Probability
1 1 1 0.25
1 2 3 0.25
3 2 1 0.25
3 3 3 0.25

The relationships between X and Y, Y and Z and X and Z can be presented as 
follows:

0

1

2

3

0 1 2 3

X

Y

0

1

2

3

0 1 2 3

X

Z

0

1

2

3

0 1 2 3

Z

Y

The above diagrams show, that although X and Y and Y and Z are perfectly dependent –
X and Z are independent.
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