

XVth GENERAL INSURANCE SEMINAR.

Evolution of the Industry

Edward Plowman & John Yick

© Edward Plowman & John Yick, Finity Consulting, 2005

The Institute will ensure that all reproductions of the paper acknowledge the Author/s as the author/s, and include the above copyright statement:

Agenda

- Parade meet the models
- Judging criteria
- Ball gown round
- Swimsuit round
- Crowning ceremony

Parade

- Selection of models from disciplines of:
 - Statistics
 - Tabular (one-way and multi-way) analysis
 - Linear model
 - Generalised linear model (GLM)
 - Generalised additive model (GAM)
 - Data mining
 - Decision tree
 - Neural network
- Models have been applied using a fairly mechanical process

Judging Criteria

- Tested on four real world insurance modelling problems:
 - A motor claim frequency analysis
 - A retention analysis for a personal lines portfolio
 - An average claim size analysis for CTP
 - A 'return to work' measure for workers' compensation claims
- Data volumes are smallish but workable

Judging Criteria

- Models have been evaluated from two different perspectives
 - Ball gown round measuring the 'elegance' of the model
 - Swimsuit round measuring how well the model represents the underlying structure
- The first is necessarily a qualitative assessment
- The swimsuit round has been assessed using objective quantitative measures

Ball Gown Round: Criteria

- Ease of use
 - time, effort, expertise needed to set up model
- Output
 - form, interpretation, explanation, graphs/visual output, supporting statistics
 - portability, i.e. ease with which model can be implemented outside the analysis software
- Practicality
 - run-time, scalability, data volume requirements
- Structural
 - assumptions, extrapolation / trends, interactions and correlations

Ball Gown Round: 1-Way

- Easy and fast to carry out
- Easy to explain and interpret results
- Portable
- Small data volume requirements
- Only real downside is the risk of doublecounting arising from correlations of exposure

Ball Gown Round: Multi-way

- Fairly easy to carry out
 - can be time-consuming if taking an exhaustive approach to factor combinations
- As dimensionality increases:
 - ease of interpretation rapidly diminishes
 - external implementation becomes more complex
 - data volume requirements increase rapidly
 - time required increases
- Can help to identify and deal with interaction effects between factors

Ball Gown Round: GLM

- Easy and fast with dedicated GLM software
- Needs some experience to interpret results effectively
- Easily portable
- Small data volume requirements
- Avoids risk of double-counting
- Makes structural assumptions

Ball Gown Round: GAM

- A generalisation of GLM
- Still allows 'link' functions, so the form of the model is not necessarily additive
- Essentially the same as GLM for categorical factors
- Allows non-linear functions ('scatterplot smoothers') to be fit to continuous factors
 - GLM: $link(Y) = X_1 + X_2 + ... + X_n$
 - GAM: $link(Y) = f(X_1) + f(X_2) + ... + f(X_n)$

Ball Gown Round: GAM

- Scatterplot smoother output example
 - Cubic spline with 8 degrees of freedom

Ball Gown Round: GAM

- Output similar to GLM
- Results can be implemented externally but this is more complex than for GLM
- Data volume requirements as for GLM
- Only currently available in specialist statistical packages
 - not generally user-friendly
 - may not be suited to large datasets

Ball Gown Round: Decision Trees

Several different algorithms for decision trees

We have used the CART algorithm

Ball Gown Round: CART

- Easy and fast with dedicated software
- Easily portable discrete segmentation
- Larger data volume requirements
- Visually appealing output
 - difficult to trace large trees

Ball Gown Round: CART

Ball Gown Round: Neural Nets

- There are many classes of neural net
- We have used a simple feed-forward network with a single hidden layer
- This consists of:
 - A set of inputs i.e. the values of the explanatory factors
 - A 'hidden' layer of neurons these generate sub-outputs using an activation function applied to a weighted sum of the inputs
 - A single output i.e. the predicted value of the model, calculated as a linear weighted sum of the sub-outputs

Ball Gown Round: Neural Nets

- The neural net algorithms fit the weights linking inputs to neurons and neurons to the output
 - · One for each blue arrow

Ball Gown Round: Neural Nets

- Easy to set up with dedicated software
 - Difficult to know an appropriate number of hidden neurons to specify
- Output largely meaningless apart from the prediction itself
- Complex to implement externally
- Unpredictable at extrapolating results (e.g. to allow for time trends)
- Long run-times even on small datasets, and converges on local optima (if at all), so may need to run several times
- Intermediate data volume requirements

Ball Gown Round: Results

In traditional reverse order

Neural Net

Decision Tree

2-Way

GAM

1-Way

GLM

Swimsuit Round: Criteria

- Data split into:
 - Training
 - Testing (random sample and time)
- For each data subsets measure:
 - Area under gains chart
 - Misclassification matrix and kappa statistics
 - Sum of squared residuals

Swimsuit Round — Motor claims frequency

Swimsuit Round - Area Under Curve

Area Under Curve (AUC)

			Workers -	
	Motor -	Motor - Accident	Return to work	CTP - Claim
	Retention	Claim Frequency	probability	Severity
One-way	72.5%	58.8%	_	_
Two-way	72.4%	60.1%	-	_
Simple Linear Model	72.9%	65.1%	_	-
Simple Linear Model GLM GAM CART	73.2%	65.3%	60.4%	56.2%
GAM	73.4%	65.3%	60.5%	56.8%
CART	71.3%	64.5%	59.3%	56.2%
Neural Nets	73.2%	-	58.4%	56.3%
One-way	73.2%	60.8%	-	-
Two-way	73.6%	61.5%	-	-
Simple Linear Model	73.9%	67.5%	-	-
S GLM	74.2%	67.5%	61.8%	57.5%
© GAM	74.4%	67.5%	62.0%	58.0%
C ART	72.6%	67.1%	59.4%	56.9%
Neural Nets	74.6%	-	64.5%	58.9%

Swimsuit Round

- NN often gives best fit against training data, but is less good against testing data (i.e. tends to overfit)
- Other models exhibit similar performance on training and testing datasets
- GAM gives a better fit than GLM; improvements modest unless there are some key continuous factors
- Two-way offers only modest improvement over oneway, and is consistently worse than GLM
- Decision tree generally weak on these tests low data volumes perhaps work against it

Swimsuit Round: Results

In traditional reverse order

1-Way

2-Way

Decision Tree

Neural Net

GLM

GAM

Crowning Ceremony

- The 'best' model will of course depend on the application and the desired nature of the output
- However, generally the important thing is that the model is predictive
- We have therefore given double points for the swimsuit round in our assessment
- The final scores...

MODEL	Ball Gown	Swimsuit	Overall
1-way	4	0	Joint 5 th
2-way	2	2	Joint 5 th
GLM	5	8	Joint 1st
GAM	3	10	Joint 1st
CART		4	4 th
NN	0	6	3 rd