

Evolution of the Industry

Linear Correlation as a Measure of Dependency

Stephen Britt Albert Napoli

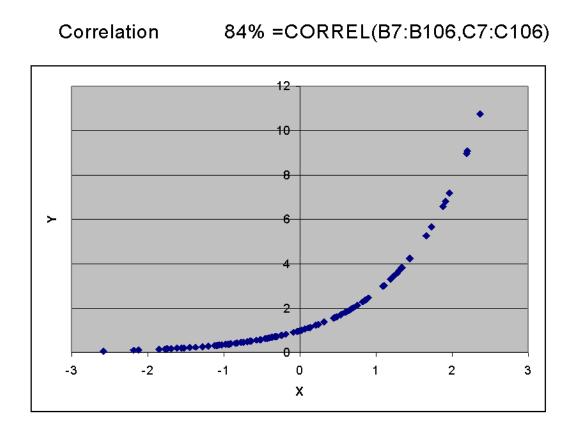
©2005 Britt & Napoli

The Institute will ensure that all reproductions of the paper acknowledge the Author/s as the author/s, and include the above copyright statement:

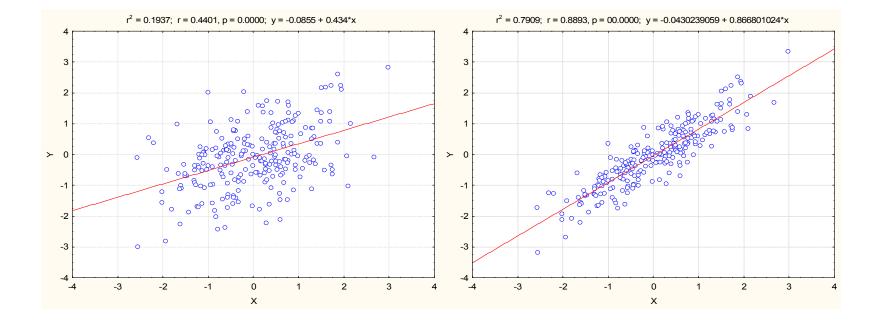
Applications of Pearson Correlation to General Insurance

Correlation is not what it seems

N(0,1)	Exp(N(0,1))
Х	Υ
-0.300232	0.7406463
-1.277683	0.2786822
0.2442573	1.2766728
1.2764735	3.5839787
1.1983502	3.314644
1.7331331	5.6583544
-2.183588	0.1126367
-0.234181	0.7912184
1.0950225	2.98925
-1.086701	0.3373276
-0.690204	0.5014737
-1.690432	0.1844398
-1.846911	0.1577236
-0.977629	0.3762018
-0.773507	0.4613921
-2.117931	0.1202802

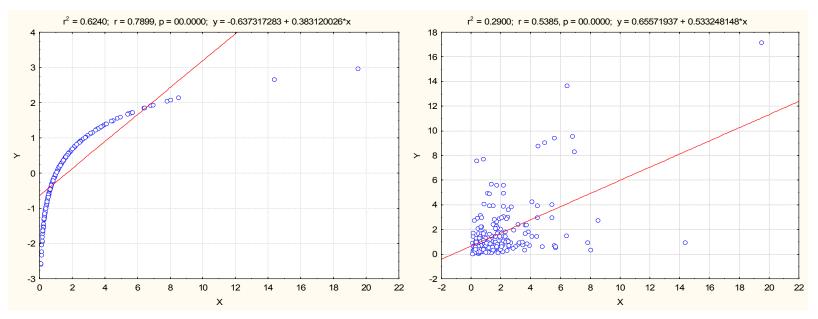


Pearson Correlation and Regression



Pearson correlation is a measure of goodness of fit in a *linear* regression.

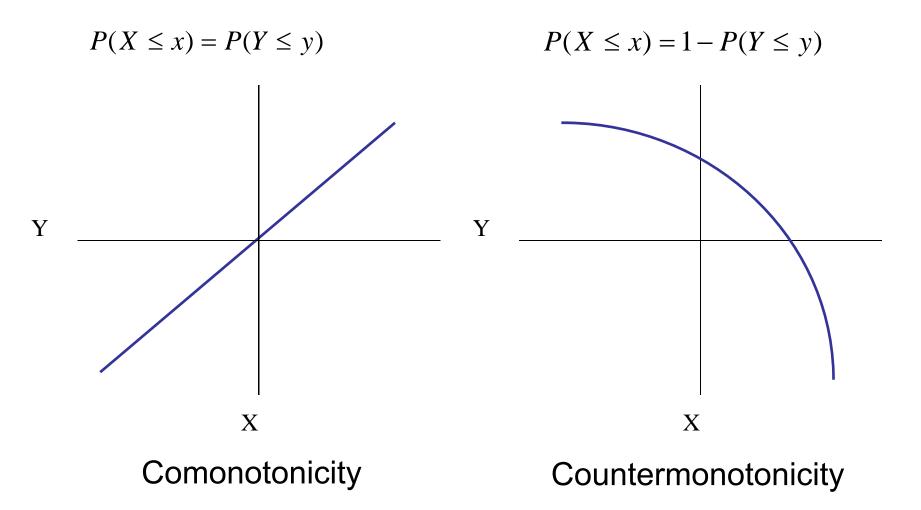
Shortcomings of Pearson



Pearson correlation is a bad measure of goodness of fit when:
 ➤ The relationship is not linear;
 ➤ The distribution is not elliptic.

$$Cov(X,Y) = E\left[\left(X - \overline{X}\right)\left(Y - \overline{Y}\right)\right]$$

Perfect dependence : Know one, know the other



Properties of Dependence

P1	$\rho(X,Y) = \rho(Y,X)$	Symmetry
P2	-1 ≤ ρ(X,Y) ≤ 1	Normalisation
P3	$ \rho(X,Y) = 1 \rho(X,Y) = -1 $	Comonotonicity Countermonotonicity
P4	$\rho(T(X),Y) = \rho(X,Y)$ $\rho(T(X),Y) = -\rho(X,Y)$	Invariance under monotonic transformation

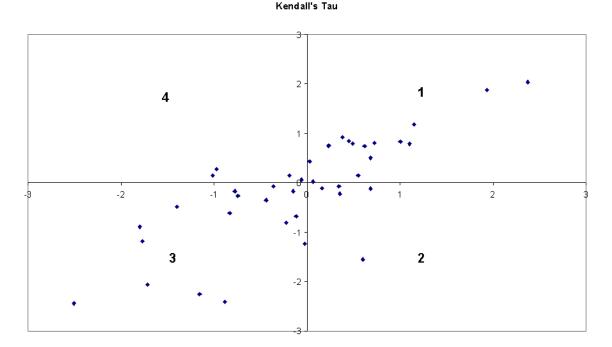
Introducing Mr Spearman

Spearm an Rho

 36
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .</

- Non-parametric method
- Pearson correlation of rank
- Spearman = 0.744.

Introducing Mr Kendall



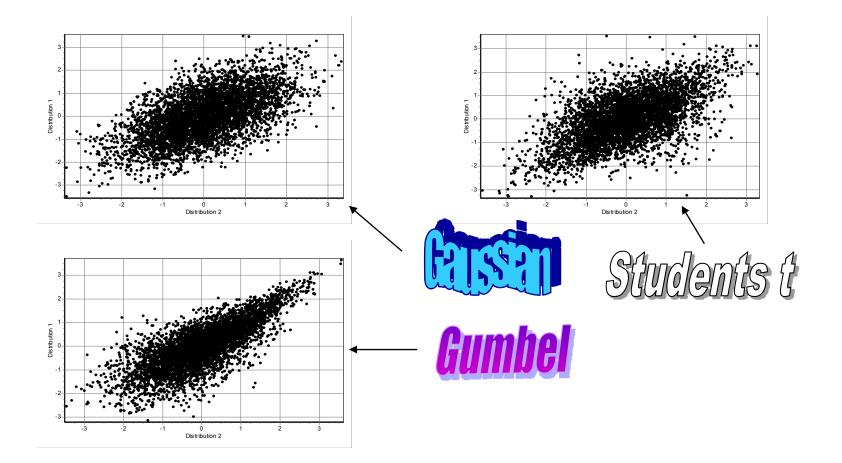
- Values in quadrants 1 and 3 are concordant (26 of these 65%);
- Values in quadrants 2 and 4 are discordant (14 of these 35%).
- Kendall's Tau = 0.65 0.35 = 0.3.

Dependency Measure Scorecard

		Pearson	Spearman	Kendall
P1	Symmetry	\checkmark	✓	\checkmark
P2	Normalisation	✓^	\checkmark	\checkmark
P3	Perfect Dependence	×	✓	\checkmark
P4	Invariance	×	\checkmark	\checkmark

[^] For elliptic distributions

Copulas



Structural modelling

