

Institute of Actuaries of Australia

Pricing Alternative forms of Commercial insurance cover

Andrew Harford

- Types of policies
- Overview of Pricing Approaches
- Total claim cost distribution
- Discounting Cash flows
- Adjusting quote for differences in cover
- Conclusion

Types of Policy

- Conventional
- Policies where insurer only pays some claims
 - Aggregate
 - XOL
- Policies involving premium adjustments
 - Burner
 - CED

- Types of policies
- Overview of Pricing Approaches
- Total claim cost distribution
- Discounting Cash flows
- Adjusting quote for differences in cover
- Conclusion

Role of underwriter

- Quote for conventional
 - Exposure
 - Claim experience
 - Changes over time
- Breakdown of premium
 - Expected claim number and size
 - Expenses
 - Cost of reinsurance
 - Profit

Pricing approaches

- Aggregates and XOLs insurer does not pay all claims and receives fixed premium
- CEDs and Burners insurer pays all claims but there are premium adjustments
- Different approach required for the two groups:
 - Adjusting for differences in cover
 - Discounting expected cash flow

- Types of policies
- Overview of Pricing Approaches
- Total claim cost distribution
- Discounting Cash flows
- Adjusting quote for differences in cover
- Conclusion

Distribution of total claim cost

- Need a distribution of total claim costs: $T=X_1+X_2+...+X_N$
- For aggregate need it to assess cost of claims over aggregate limit
- For Burners and CEDs also need this distribution
- Derive using assumptions about distribution of claim numbers and claim sizes

Claim number distributions

- Choose the **form** of the distribution: Poisson, Negtive binomial, ...
- Choose **parameters** of the distribution
- Set expected value equal to underwriters assessment
- Model different clam types separately

9

Claim size distributions

- Choose the form Lognormal, Gamma, ...
- Test validity of selection
- Use underwriter's assessment to set mean
- How to set variance? 2.0 1.8 1.6 Sigma Parameter 1.4 1.2 1.0 0.8 0.6 04 0.2 0.0 8 5 6 Mu Parameter

Simulation

- Quick with modern computing power
- Simple to implement
- Easy to understand
- Flexible Calculate other items of interest

Other considerations

- Development delays
- Model and parameter uncertainty
- Accumulations

- Types of policies
- Overview of Pricing Approaches
- Total claim cost distribution
- Discounting Cash flows
- Adjusting quote for differences in cover
- Conclusion

Discounting expected cash flows

- Burners and CEDs insurer pays all claims
- Premium adjustments depending on claims
- Simulate potential claims for a year and the premium adjustments they generate
- Calculate the expected value of future premium adjustments
- Discount expected premium adjustments and make equal to Conventional quote

Discounting expected cash flows

- Considerations :
 - credit rating of insured
 - development of claims
 - Uncertainty in constructing claim distributions

- Types of policies
- Overview of Pricing Approaches
- Total claim cost distribution
- Discounting Cash flows
- Adjusting quote for differences in cover
- Conclusion

Adjusting for differences in cover

- Underwriter produces quote for conventional policy
- Start of with underwriters assessment and adjust for differences in cover

Adjusting for differences in cover

Adjusting for differences in cover

- Suitable for Aggregates and XOLs
- Ensures consistency with underwriter's quote
- Relies on skill of underwriter

Expected cost of claims

 For aggregate compute Max(T-A,0) in each simulation and get average

Biennial Convention 2007 Adventures in Risk

23-26 September 2007 Christchurch, New Zealand

- Claims handling
 - Claims handled by client or insurer?
- Underwriting
 - Time involved preparing quote
- Overheads

Reinsurance

- Reinsurance recoveries calculated for each simulation for the conventional and the alternative risk
- Derive ratio for average recovery from conventional and from alternative
- Apply this ratio to reinsurance margin in conventional quote

Investment income

- Delays in paying claims:
 Typically involves larger claims
- Not usually material on short tail lines

Profit

- No consensus
- Consider level of capital needed for conventional policy versus capital for alternative policy
- Benchmark
 - game theoretic approach
 - Average amount of marginal capital needed to write risk
 - difficult to apply in practice

Profit – some approaches

- Standard deviation
- Value at risk
- Probability of meeting claims to some level
- Proportional hazards
- Capital consumption

Adventures in Risk

23-26 September 2007 . Christchurch, New Zealand

Profit – comparison of methods

- Types of policies
- Overview of Pricing Approaches
- Total claim cost distribution
- Discounting Cash flows
- Adjusting quote for differences in cover
- Conclusion

Conclusion

- Modifying the underwriter's quote
 - Consistency
 - Tractability
 - Simplifies some of the calculations
 - Use knowledge & skill of underwriter