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Abstract. Delta Boosting(DB) is a new iterative algorithm similar to the
popular Gradient Boosting(GB), but with a higher efficiency. The model ad-

dresses the weakness of current boosting schemes in actuarial modeling where

differentials are commonly multiplicative. Like other members in boosting ma-
chines, DB combines simple base learners to form predictive models. The key

feature of DB is to simultaneously solve for parameters and coefficients can be

exported into manageable amount of tables. In this paper, the detailed mech-
anism of DB is elaborated. The iterative formulas for common distributions

are provided. The reason of better efficiency (compared with GB) is explained

with both mathematics and examples. The examples also show that the pre-
dictive power of DB is superior over traditional GLM, neural networks and

GB. Models are evaluated based on various diagnostics. Additional variance
reduction techniques are applied to enhance prediction power of DBM.

Keywords: Statistical learning – Boosting trees – Pricing – Predictive mod-

eling – Generalized Linear Model – Actuarial Science – Gradient boosting

Introduction

Boosting algorithms, particularly Gradient Boosting Machine (GBM), have gained
popularity in a wide array of professions (Biomedical [2], Web-search [30], Ecol-
ogy [31], Marketing [27], Politics [23] and many others) in recent years. It is based
on intuitive algorithms and yet is a highly predictive modeling technique. It is
classified as a data mining technique as it does not require any assumptions of
dependence among explanatory variables. Nevertheless, modelers can still apply
traditional statistical concepts by specifying loss functions to be minimized. The
abundance of diagnostics, which measure model performance, assists users in model
selection and variable selection. In contrast with other data mining techniques, mar-
ginal effect (see Figure 2) and joint effect (see Figure 4) of model parameters from
boosting machines can be extracted easily. The feature significantly enhances the
transparency of the modeling methods.

The use of data mining is growing in actuarial practice. It is also a popular
topic in industrial conference and plenty of commercial data-mining packages are
available in the industry. Despite of its promising growth, the usage is still limited.
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On the contrary, the trend of actuarial modeling is on how to improve the predic-
tive power of generalized linear models (GLM) [28]. There are numerous insurance
pricing literatures on such models [1, 7, 20]. Regularization techniques like penal-
ized regressions – LASSO, ridge regression and elastic regression or multivariate
adaptive regression splines are typical predictive modeling topics in actuarial con-
ferences. This phenomenon can in fact be easily explained by the transparency of
GLM and corresponding diagnostics. Actuarial pricing models generally produce
multiplicative differentials. GLM with log link directly provides what it is required.
The transparency of the model also helps stakeholders verify the economic signif-
icance of the parameters. On the other hand, data mining techniques usually do
not have a presentable algorithms. A summation of 5000 terms is fairly common.
The lack of well-accepted diagnostic tools for data mining also presents a barrier
for practitioners.

With ability in achieving both predictive accuracy and model transparency, GB
sheds light to actuaries in the direction that potential advances actuarial modeling.
The transparency concern in fact weighs more in actuarial profession, where mod-
els must generally be communicated to and approved by non-statistically trained
decision makers.

There is another key advantage of tree-based GB. Tree-based GB uses classi-
fication and regression tree (CART) as its base learner. It usually requires little
data preprocessing and tuning of the parameters (Guelman [19]) when compared
to other modeling. It is highly robust to data with missing/unknown values and
can be applied to classification or regression problems from a variety of response
distributions. Complex interactions are modeled in a simple fashion, missing values
in the predictors are systematically managed almost without loss of information,
and models/variables selections are performed as an integral part of the procedures.
These properties make this method an even better candidate for insurance loss cost
modeling. Guelman [19] presents a comprehensive analysis of loss cost modeling
using GBM. In this paper, the same dataset is used for comparing the performance
between GB and an improved sibling, Delta Boosting (DB). Interested readers may
find it useful to cross reference the analyses and results done between both papers.

However, GBM has a major weakness in actuarial pricing. In Property and Ca-
sualty insurance, losses generally emerge with low frequency. Poisson distribution
usually is assumed for claim frequency and Tweedie, a compound poisson model
with gamma distribution as a secondary distribution, is used to model loss cost
data. In both case, a significant portion of data is 0. GB is in general sensitive
to this situation and produces high prediction error and variance in log link. This
presents a barrier for actuaries to apply the concepts in pricing without adjusting
the data. This phenomenon is explained in Section 2.

In view of the weakness, a new algorithm is proposed and is called Delta Boosting
Machine(DBM). It is tailor-made model for actuarial pricing as it overcomes the
weakness of GBM mentioned above. In addition to its robustness, it is also a
more efficient technique in terms of computing time as it integrates the parameters
derivation into 1 step. An example is shown in this paper to show that this faster
sibling also has a better predictive performance.
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1. Generalized Additive Models and Boosting

The predictive learning problem can be characterized by a vector of inputs x =
{x1, . . . , xp} and response y.

Given a collection of M instances {(yi,xi) ; i = 1, . . . ,M} of known (y,x) values,
the goal is to use this data to estimate the function, f , that maps the input vector

x into the values of the output y. The estimate, f̂ , can then be used to make
prediction on instances where only x are observed. Formally, we wish to train a

prediction function f̂(x) : x → y that minimizes the expectation of a specific loss

function L(y, f̂) over the joint distribution of all (y,x)-values

(1) f̂(x) = argmin
f(x)

Ey,xL(y, f(x))

The focus of this paper is on regression, where the output y is quantitative and

the objective is to estimate the mean E(y|x) = g−1 ◦ f̂(x). g(·) is a link function

equivalent to the one in GLM and f̂(x) captures the interactions and predictive

power of underlying variables. In linear regression, f̂(x) =
∑T
t=1 βtxt. With more

generality,

(2) f̂(x) =

T∑
t=1

f̂t(x)

However, this extreme generality is difficult to attain. One of the goals of predictive
modeling techniques is to get as close as possible to this generality. Therefore,

predictive models express f̂(x) as

(3) f̂(x) =

T∑
t=1

f̂t(x) =

T∑
t=1

βth(x;at)

where the functions h(x;at) are usually taken to be simple functions, characterized
by a set of parameters a = {a1, a2, . . .} and a multiplier βt (t = 1, 2, ...). This
represents the fundamental form of generalized additive model. This form includes
models such as neural networks, wavelets, multivariate adaptive regression splines
(MARS), regression trees [22] and boosting.

1.1. The Boosting Algorithms. Boosting methods are based on an idea of com-
bining many “weak” rules (also called base of weak learners) to build predictive
models. A weak rule is a learning algorithm which performs only slightly better
than a coinflip. The aim is to characterize “local rules” related to predictive vari-
ables (e.g., “if an insured characteristic A is present and B is absent, then a claim
has high probability of occuring”). Although this rule alone would not be strong
enough to make accurate predictions on all insureds, it is possible to combine many
of those rules to produce a highly accurate model. This idea, known as the “the
strength of weak learnability” [33] was originated in the machine learning com-
munity with the introduction of AdaBoost [13, 14], the early version of boosting
algorithms.

Below is a short list of base learner variations.
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Table 1. Common Candidate of Base Learners

Model Family Base Learners Comment

[1ex] Triangular Wavelets ht(x, at) = |at,1|−1/2 ∗ |x− att, 2|/at,1 t, 1 is a scaling multiple and t, 1 is the
center of a wavelet

Normal Wavelets ht(x, at) = e
−(x−t,2)2/at,1 at,1 is a scaling multiple and at,2 is the

center of a wavelet
multivariate adaptive regression splines ht(x, at) =

max(0, x− at,2)− at,1 max(0, at,2 − x)
at,1 is a scaling constant and att, 2 is
the knot of a hinge

Classification Tree ht(x, at) = 1x∈at at is classification rule. e.g., Age ¿= 30

In this paper, the base learner adopted is classification tree. In the context of
boosting, h(x;at) represents a “weak learner”, βt represents a weight to the learner

and f̂(x) is associated with the weighted majority vote of the individual weak
learners.

Estimation of the parameters, βt and at, in (3) amounts for solving

(4) min
βt,at

M∑
i=1

L

(
yi,

T∑
t=1

βth(xi;at)

)
where L(y, f(x)) is the chosen loss function as in (1) to define lack-of-fit. A “greedy”
forward stepwise method solves (4) by sequentially fitting a single weak learner and
adding it to the expansion of previously fitted terms. The corresponding solutions
of each new fitted term is not readjusted as new terms are added into the model.
This is outlined in Algorithm 1 (Friedman et al [15]).

Algorithm 1 Forward Stagewise Additive Modeling

1: Initialize f0(x) = 0
2: for t = 1 to T do
3: Obtain estimates βt and at by minimizing

∑M
i=1 L(yi, ft−1(xi) + βh(xi;a))

4: Update ft(x) = ft−1(x) + βth(x;at)
5: end for
6: Output f̂(x) = fT (x)

2. Gradient Boosting Trees

Adaptive boosting [13] is the first success of boosting algorithms. In late 90’s
to early 00’s, It was a popular classification tool that ensembles weak rules. In-
terestingly, the mysterious success of the algorithm cannot be explained until an
elegant paper written by Friedman et al [15] provide the answer. The crust of the
algorithm is to iteratively minimizing a transformed distance between the actual
observation and the corresponding prediction.

By equating the loss functions to deviances of common statistical distributions,
Friedman [16] proposed a new boosting method called gradient boosting machines.
It extends the boosting capacity by featuring solutions to regression type problems
and is considered to be a significant breakthrough in data mining. The algorithm
successfully includes statistical elements, such as additive modeling and maximum-
likelihood, in the modeling. By doing so, the authors were able to derive model
diagnostics to assess the quality of the predictions. The existence of the diagnostics
substantially blur the boundary between machine learning and statistical modeling.
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It is also shown in Friedman [22] using empirical examples that GBM is the
top-tier predictive model among data mining techniques. The finding is further
confirmed by the results of this paper. In today’s world where computing power
is less an issue, predictive power is clearly the top concern. The simple theory of
the algorithm also makes less technically sound users to understand the beauty and
power of predictive modeling.

2.1. The Algorithm. Squared-error and exponential error are plausible loss func-
tions commonly used for regression and classification problems. However, there
may be situations in which other loss functions are more appropriate. For instance,
binomial deviance is far more robust than exponential loss in noisy settings where
the Bayes error rate is not close to zero, or in situations where the target classes
are miss-labeled. Similarly, the performance of squared-error significantly degrades
for long-tailed error distributions or the presence of outliers in the data. In such
situations, other functions such as absolute error or Huber loss are more appropri-
ate. If losses are bimodal or multi-modal, users can adopt the deviance of mixtures
of Erlang [25, 26] as the loss function.

The solution to line 3 in Algorithm 1 is not unique and is dependent on the
loss function. In most cases, it is difficult to obtain directly. The gradient boosting
algorithm solves the problem using a two-step approach which can be applied to any
differentiable loss functions. The first step estimates at by fitting a weak learner
h(x;a) to the negative gradient of the loss function (i.e., the “pseudo-residuals”)
using least-squares. In the second step, the optimal value of βt is determined given
h(x;at). The procedure is shown in Algorithm 2.

Algorithm 2 Gradient Boosting

1: Initialize f0(x) to be a constant, f0(x) = argmin
β

∑M
i=1 L(yi, β)

2: for t = 1 to T do
3: Compute the negative gradient as the working response

ri = −
[
∂L(yi, f(xi))

∂f(xi)

]
f(x)=ft−1(x)

, i = {1, . . . ,M}

4: Fit a regression model to ri by least-squares using the input xi and get the
estimate at of βh(x;a)

5: Get the estimate βt by minimizing L(yi, ft−1(xi) + βh(xi;at))
6: Update ft(x) = ft−1(x) + βth(x;at)
7: end for
8: Output f̂(x) = fT (x)

For squared-error loss, the negative gradient in line 3 reduces to the usual residu-
als (yi− ft−1(xi)) and in this case the algorithm performs least-squares calculation
in line 4. With absolute error loss, the negative gradient is the sign of the resid-
uals. After obtaining a from line 4, estimation of βt is then performed in line 5.
Separating the estimation of parameters dramatically reduce the complexity of the
modeling.

2.2. Injecting Randomness and Regularization. Over-fitting is known to be
an unwanted twin with data mining. Data mining is capable in extracting observed
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patterns, even unwanted noise, in a given dataset. If left unattended, most models
can fit the train dataset perfectly but provide poor predictive strength to indepen-
dent data. Gradient boosting is not an exception, although Friedman [17] stated
that it is affected to a less extent.

Nevertheless, Friedman [16, 17] further improves the performance of GBM by
injecting two regularization techniques, namely shrinkage and stochastic bagging
( [4, 5, 6, 17] and reference therein), to temper the over-fitting issue. Noise suppres-
sion techniques are in general compatible with each other and generate satisfactory
results.

In data mining exercise, data are usually partitioned into at least two subsets,
train and hold-out. Train dataset is used for the modeling and various models
are compared by performing checks on independent hold-out dataset. Fitting a
model too closely to the train data can lead to poor generalization performance.
Regularization methods are designed to reduce over-fitting by placing restrictions
on the parameters of the model. In the context of boosting, this translates into
controlling the number of iterations T (i.e. trees) during the training process.
The approach adopted by Freidman [16, 17] is by scaling down the contribution of
each tree by a (shrinkage) factor τ ∈ (0, 1]. It can significantly reduce overfitting.
Shrinkage factors can easily be adapted to boosting algorithms by modifying line 6
in Algorithm 2 to

(5) ft(x) = ft−1(x) + τ.βth(x;at)

The parameter τ has the effect of retarding the learning rate of the series. In each
iteration, only a small fraction (say 1%) of β is applied to ft(x). Thus, the residuals
will not be dramatically changed by interations. A longer series is then required to
compensate for the shrinkage. Lower values of τ requires a larger value for T for
the same test error. Empirically, it has been shown that small shrinkage factors
(τ < 0.1) yield dramatic improvements over boosting series built with no shrinkage
(τ = 1). The trade-off is that a small shrinkage factor requires a higher number of
iterations and computational time increase. A strategy for model selection often
used is practice is to set the value of τ as small as possible (i.e. between 0.01 and
0.001), which then leads to a relative large T . Readers that are not experienced
with data mining should note an interesting point: The MLE or loss minimizer are
not maximizing the fitness but instead an extremely small fraction of it performs
much better. To our best knowledge, there is no perfect explanation yet. A good
evidence is there is still no scientific way to determine optimal τ . We here attempt
to provide a heuristic reasoning in the context of actuarial modeling. First, the
base learners are usually a coarse split that ”provides slightly better prediction
over coin tossing”. The data is usually split into a few partitions. This brute
force separation usually results in pattern distortion in remaining iterations. For
example, if a positive variable A has a linear relation with y, the best split for the
base learner may be at = k, splitting the data into A ∈ (0, k] and A ∈ (k,∞).
Most algorithms end the iteration by assigning the adjustment to each partition.
However, in next iterations, the pattern is distorted. Assigning a small learning
rate will temper the effect significantly such that the pattern is more preserved.
Second, and a more popular explanation, maximizing the fitness in the training
dataset may result in over-fitting. Insurance data in general contains a lot of noise.
Fitting the data too tight means noise specific to the training data goes to the
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prediction as well. Third, since the loss minimization is an iterative (instead of
holistic) process, the loss minimization split at each iteration is not necessarily
optimal overall. Tempering the prediction is equivalent to assigning credibility to
the splits.

The second modification introduced in the algorithm is the incorporation of sto-
chastic bagging of data [17]. This involves taking a simple random sample without
replacement of usually approximately 1/2 the size of the full training data set at
each iteration. This sample is then used to fit the weak learner (line 4 in Algorithm
2) and compute the model updates for the current iteration. As a result of this ran-
domization procedure, the variance of the individual weak learner estimates at each
iteration increases, but there is less correlation among these estimates at different
iterations. The net effect is a reduction in the variance of the combined model.
In addition, this randomization procedure has the benefit of reducing the compu-
tational demand. For instance, taking half-samples reduces computation time by
almost 50%.

In this paper, both regularization approaches are adopted to enhance the model
performance.

3. Delta Boosting

3.1. Weakness in GBM. GBM is praised as one of the best predictive modeling
tools because of several theoretical and practical appeals. Hastie et al. [22] shows
empirically that GBM is the most predictive under benchmark datasets. The al-
gorithm is intuitive and the model results can be presented through marginal and
interaction plots. Moreover, it is known to be flexible to missing values and cor-
related parameters. These features allow much less effort in data cleansing to get
satisfactory fit. However, it is not without weaknesses. In particular, we find it
difficult to apply GBM in insurance modeling.

Most insurance products are of low claim frequency. It implies that the majority
of the exposures do not incur any claim during the exposure period. Moreover,
insurance pricing are mainly multiplicative. In the terminology of GLM, log-link is
the required link function as it is the only link function that result in multiplicative
algorithm.

Unfortunately, GBM is not very good in dealing with these situations due to
the robustness of the model to small values. According to line 5 in Algorithm 2
for gradient boosting tree, observations are split into J nodes. If all (or almost all)
observations in a partition have claim count of 0, β will be estimated to be negative
infinity (or very large negative number). Since negative infinity is not a feasible, nor
sensible, number in common programming, a cap is applied in reality. This quick
fix poses two potential issues for the overall prediction. Since any cap is far from
negative infinity, GBM tends to put those observations in the same partitions for
many iterations. This wastes computing efficiency in many occasions. Also, a large
βt estimate leads to a large change in ft(x). It may lead to those numbers being
classified as outliers in future iterations, distorting the influence of other variables.

GBM can also be time consuming. Using the 4-million records data being mod-
eled in this paper, It can take up to 6 hours to run using a standard personal
computer. The same computer can obtain results for GLM in less than 5 minutes
assuming the parameters are well tuned and missing values are taken care of. The
relatively slow performance is partially due to some imperfect use of calculation.
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To recoup, GBM first calculates the gradient of each observation. A base learner
is then used to partition observations based on the gradients. An adjustment is
calculated for each partition by assigning a constant that minimizes the loss func-
tion. The gradient in line 3 and 4 in Algorithm 2 is merely an intermediate step
to partition the dataset and is note used for loss minimizer calculation, in line 5,
in every iteration. We called it a basis inconsistency between the partition and
loss minimization. If the basis between the two key operations are identical, a sig-
nificant amount of computing time can be saved. The loss functions will also be
reduced to the maximum extent.

3.2. The Theory. In view of the issues posted for actuarial application, we propose
a new method called delta boosting to alleviate the weakness of GB. In particular,
it is more robust to extreme values in log-link functions and improves computing
efficiency by having consistent basis in partitioning and loss minimizing. The crust
of the modeling technique is to take leverage of predictive power of base learner
and the existence of shrinkage that makes linear approximation reliable.

Although boosting is not restricted to trees, our work will focus on the case
in which the weak learners represent a “small” classification and regression tree
(CART). They were proven to be a convenient representation for the weak learners
h(x;a) in the context of boosting. In each iteration, CART splits the dataset into J
nodes by maximizing the difference among the average residuals (gradient in GBM)
of each group (line 3 and 4). A constant is applied to each node that minimize the
loss function (line 5).

Application of shrinkage factor to the base learner prediction effectively put a
credibility factor to the model. As mentioned in previous sections, an extremely
small factor, e.g 0.001, is usually used. The application of small shrinkage makes a
Taylor’s approximation to the first degree reasonably close to the actual number.
In particular, ln(1 + x) ∼ x.

Taking Poisson and Tweedie as two examples, we use deviance as the loss func-
tions. In each iteration, CART splits the dataset into J nodes. Within each

node, the loss function minimizer for Poisson and Tweedie are ln(
∑
yi∑

eft(xi)
) and

ln(
∑
yie

ft(xi)(1−p)∑
eft(xi)(2−p) ) respectively. The Taylor’s approximations for both distributions

are
∑
yi/n−

∑
eft(xi)/n and

∑
yie

ft(xi)(1−p)/n−
∑
eft(xi)(2−p)/n.

The linear approximation turns out to be the key to improve the boosting ef-
ficiency and robustness. The sole reason that drives robustness concern is the
sensitivity in transformation. The slope of lnx is 1/x. Thus, a change, at small x,
towards zero can result in a big shift. Without appropriate modifications, model
results may come into surprises to users. In particular to insurance pricing, it is
common to see at least 80% of the observations being zero. This may be a rea-
son that prevent boosting entering the field of actuarial pricing. On the contrary,
the linear approximation avoids this issue completely. The summation term in the
previous paragraph has uniform slope of 1 or −1 to observed and predicted value
respectively. With this characteristic, the algorithm handles situations with very
small prediction or actual observations nicely.

DBM also attempts to answer the basis inconsistency in GBM. In line 5 of Algo-
rithm 2, DB replaces the calculation by its more robust linear approximation. It is
trivial to deduce from the above examples that the linear approximation is in gen-
eral a simple summation term. We can take advantage of it by using the summand
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as the pseudo minimizer for each observation. Extending the Poisson and Tweedie
examples, we have yi − eft(xi) and yie

ft(xi)(1−p) − eft(xi)(2−p) as the pseudo mini-
mizer. DBM calculates this for each observation instead of the gradient in GBM.
DBM then use the base learner to split the dataset in J nodes by maximizing the
group average difference of target values (pseudo minimizer in DBM) among the
partition. Since the group average is exactly the group loss minimizer, the last
step of calculating βt becomes redundant as it is by definition equal to the group
averages, which are calculated when deriving at, in all cases. A step of calculation
is saved and this approximately saves 30% of runtime. This backward engineering
of algorithm guarantees that the individual pseudo minimizer and group minimizer
are in the same basis. Moreover, the split by base learner reduces the loss function
to the maximum extent since the optimal values of both at and βt are derived simul-
taneously. To conclude, through linear approximation of loss minimizer, existence
of shrinkage factor and synchrnoizing the bases, DBM improves the robustness,
efficiency and effectiveness of boosting machines.

The algorithm is listed as the summary of the modifications.

Algorithm 3 Delta Boosting

1: Initialize f0(x) to be a constant, f0(x) = argmin
β

∑M
i=1 L(yi, β)

2: for t = 1 to T do
3: Compute the pseudo loss function minimizer, ri.
4: Fit a regression model to ri by least-squares using the input xi and get the

estimate at of h(x;a). h(x;a) is the minimizer
5: Update ft(x) = ft−1(x) + h(x;at)
6: end for
7: Output f̂(x) = fT (x)

Appendix A illustrates the full algorithms for both Poisson and Tweedie distri-
bution.

4. Application to insurance pricing

The section walks through the data processing, model building considerations
and analysis of model outputs.

4.1. The data. The data used for this analysis are extracted from a Canadian
insurer and consists of policy and claim information at the individual vehicle level.
The coverage of interest is at-fault collision accident from a province. The dataset
includes earned exposures from Jan-06 to Jun-09 and claims occurred during the
same period of time, with losses based on best reserve estimates as of Dec-09. The
input variables (for an overview, see Table 2) are represented by a collection of
quantitative and qualitative attributes of the vehicle and the insured. The output
is the predicted loss cost.

The actual claim frequency measured on the entire sample is approximately
3.5%. This represents an imbalanced or skewed class distribution for the target
variable, with one class represented by a large sample (i.e. the non-claimants)
and the other represented by only a few (i.e. the claimants). Classification of
data with imbalanced class distribution has posed a significant drawback for the
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performance attainable by most standard classifier algorithms, which assume a
relatively balanced class distribution [34]. These classifiers tend to output the
simplest hypothesis which best fits the data and, as a result, classification rules
that predict the small class tend to be fewer and weaker compared to those that
predict the majority class. This may hinder the detection of claim predictors and
eventually decrease the predictive accuracy of the model. On the contrary, the issue
is of less a concern in DBM due to the robustness of linearity.

To verify the prediction by predictive models, data partitioning is the most
accepted practice. We partitioned the data into train (50%), validation (20%) and
test (30%) data sets through random sampling. Model is trained using the train
data only. Deviance is calculated for both training and validation in each iteration.
Optimal nubmer of iterations for the model is selected by picking the iterations
which result in smallest deviance in validation dataset. The test dataset is used to
assess the generalization error of given models.

Table 2. Overview of Loss Cost predictors

Driver Characteristics Accident/Conviction History Policy characteristics Vehicle characteristics

DC1. Age of principal
operator

AC1. Number of chargeable
accidents (last 1-3 years)

PC1. Years since policy
inception

VC1. Vehicle make

DC2. Years licensed AC2. Number of chargeable
accidents (last 4-6 years)

PC2. Presence of
multi-vehicle

VC2. Vehicle purchased new
or used

DC3. Age licensed AC3. Number of
non-chargeable accidents (last
1-3 years)

PC3. Collision Deductible VC3. Vehicle leased

DC4. License class AC4. Number of
non-chargeable accidents (last
4-6 years)

PC4. Billing type VC4. Horse power to weight
ratio

DC5. Gender AC5. Number of driving
convictions (last 1-3 years)

PC5. Billing status VC5. Vehicle Age

DC6. Marital status AC6. Prior examination costs
from Accident-Benefit claims

PC6. Rating Territory VC6. Vehicle Price

DC7. Prior Facility
Association

PC7. Presence of occasional
driver under 25

DC8. Credit score (postal
code level)

PC8. Presence of occasional
driver over 25

DC9. Insurance lapses PC9. Group business

DC10. Insurance suspensions PC10. Business origin

PC11. Dwelling unit type

The names of all variables will be masked in the rest of the paper due to a
confidentially agreement. Despite this constraint, there is no significant impact in
understanding the results.

4.2. Building the model. The first decision in building the model involves se-
lecting an appropriate loss function L(y, f(x)) as in Equation (1). Squared-error

loss,
∑M
i=1 (yi − f(xi))

2
, and Absolute-error loss,

∑M
i=1 |yi − f(xi)|, are the most

popular among others. However, it is under a consensus among actuarial commu-
nity that Tweedie distribution best mimics the loss cost distribution. Thus, we pick
the deviance as the loss function of interest. The freedom of choice of loss function
allows modelers to provide the self-learning machines ex-ante knowledge of data.
This feature is extremely important in the authors’ point of view.

Then, it is necessary to select the shrinkage parameter τ applied to each tree
and the sub-sampling rate as defined in Section 2.2. The former was set at the
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fixed value of 0.001 and the later at 50%. Next, we have to select the the size of
the individual trees S, which indicate of level of interaction, and the number of
boosting iterations T (i.e., number of trees). The size of the trees was selected by
sequentially increasing the interaction depth of the tree, starting with an additive
model (single-split regression trees), followed by two-way interactions, and up to
six-way interactions.

Figure 1. The relation between train and cross validation error
and the optimal number of boosting iterations (shown by the ver-
tical green line).

5. Results and Analyses

5.1. Diagnostics. After training the dataset through DBM, the first checkpoint is
to decide the stopping rule. There are quite a few popular rule-of-thumbs to choose
from, e.g. stop when the deviance improvement of train dataset below a threshold,
deviance minimization in validation dataset, or cross-validation. Deviance mini-
mization in validation dataset is selected in this example.

Figure 1 plots the deviance of train and validation at each iteration. The figure
is fairly standard in 3 aspects. First, the deviance of train dataset is monotonic
decreasing. It is intuitive as the goal of each iteration is to reduce the deviance.
Second, the curve for validation dataset is convex. The convexity implies additional
iterations improve the deviance until a point where ”over-fitting” results. Choosing
the number of iterations that results in minimal deviance in validation dataset thus
reduces the risk of over-fitting. Third, the improvement of deviance before the
stopping rule is greater in train than in validation dataset. It implies that some
noise are brought to the model.
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Table 3 displays the relative importance of all predictive variables for the models.
The importance is defined to be the reduction of loss for each variable under all
iterations. The importance are then normalized such that the sum of the normalized
numbers is equal to 100. It provides a way to measure the influence of each variable.
In the case where there are numerous input variables, this exhibit is a neat tool in
variable selection. From Table 3, we can comfortably remove Variable 36, 37 and
38 without impeding the model performance. This can help relieve the over-fitting
concern.

Table 3. Table of Relative Importance of each Predictive Variable

Variable Relative
Importance

Variable Relative
Importance

Variable 1 16.38 Variable 20 1

Variable 2 12.5 Variable 21 0.97

Variable 3 11.7 Variable 22 0.83

Variable 4 7.7 Variable 23 0.69

Variable 5 6.69 Variable 24 0.67

Variable 6 6.37 Variable 25 0.62

Variable 7 4.51 Variable 26 0.56

Variable 8 4.1 Variable 27 0.55

Variable 9 3.93 Variable 28 0.53

Variable 10 3.72 Variable 29 0.44

Variable 11 2.87 Variable 30 0.41

Variable 12 1.97 Variable 31 0.17

Variable 13 1.92 Variable 32 0.15

Variable 14 1.81 Variable 33 0.12

Variable 15 1.42 Variable 34 0.07

Variable 16 1.4 Variable 35 0.03

Variable 17 1.13 Variable 36 0

Variable 18 1.07 Variable 37 0

Variable 19 1.02 Variable 38 0

Partial dependence plots offer additional insights in the way these variables af-
fect the dependent variable in each model. Figure 2 shows the partial dependence
plots of some predictive variables. Partial dependence measures the marginal con-
tribution of the variables to the overall model by integrating out the effects of other
predictors. In terms of actuarial pricing, the y-axis can be treated as the relativity
while x-axis can be treated as the levels of the variable. For Variable 13, it exhibits
a strong monotonic decreasing pattern until very last end of the spectrum. The
exposures in that portion is small (indicated by the shaded areas), resulting in high
fluctuation.

There is no scientific way to find the optimal transformation in GLM. This is
likely to be fixed by imposing linear or quadratic pattern to force a monotonic
pattern. In neural network, there is even fewer tool to impose ex-ante knowledge to
the model. However, in boosting machine, which is driven by simple base learners,
the fix is surprisingly easy. By imposing a restriction to the machine not splitting
the dataset in case of pattern reversal, we can obtain desirable monotonic patterns.
After the monotonic restriction, the partial dependence plot for Variable 13 is
shown in Figure 3. This handy tool turns out to be a powerful tool in improving
the predictive power of the machine.
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Interested readers can refer to Friedman [16] and Ridgeway [32] for details about
the relative importance and partial dependence plots.

Figure 2. Partial dependence plots for Variable 13 without mono-
tonic constraint

Figure 4 shows a joint dependence between Variable 13 and Variable 18. Variable
18 does not have significant impact in loss cost when its value is small. However,
when the value becomes larger, there is a joint influence with Variable 13. When
Variable 13 has a large value, the joint effect is negative. This pushes the prediction
lower. The contrary is true for smaller value in Variable 13.

After checking all the diagnostics and graphs, we can re-run the model with
modifications (variables removal and monotonic constraint). If model users are
satisfied with the updated model, the output is then applied to test dataset to
verify the predictive power on an independent dataset. Lift plot and Gini index are
common ways to compare test model performance. The two methods show parallel
results in almost all cases and lift plot is better in interpretation. Thus, we are
going to utilize the lift plot.

Data are split into n, 20 for train and 10 for test in this example, buckets
according to the propensity to loss of each exposure. Each bucket has approximately
the same exposure for comparison. the average loss for each bucket is then plotted
against the predicted loss. If the model is predictive, the plot should be very closs
to y = x. A lift is defined to be the average loss of the highest bucket to the average
loss of the whole dataset. A higher lift means the model is more able to differentiate
the worst from the population.

Figure 5 shows that the model is in fact predictive as it is close to the desirable
line.
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Figure 3. Partial dependence plots for Variable 13 with mono-
tonic constraint

Figure 4. Joint influence plot of Variable 13 and Variable 18 on
loss cost

5.2. DBM vs GLM. We next compare the predictive accuracy of Delta Boosting
(DB) against the conventional Generalized Linear Model (GLM) approach using
the test sample. This was done by calculating the ratio of the rate we would
charge based on the DBM to the rate we would charge based on the GLM. Then
we grouped the observations into buckets according to the ratio. Finally, for each
bucket we calculated the loss ratio based on GLM rates (computed as the ratio of
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Figure 5. Lift plot of DBM for Train and Test dataset

actual losses and GLM predicted loss cost). This test is commonly called double
life test. Figure 6 displays the results. The upward trend indicates that as DBM
requires higher premium relative to GLM rates, the loss ratio is higher for GLM
rates in general. That applies DBM is more predictive than GLM.

The lift plot shows a less exciting contrast. Both models exhibit very high R2,
indicating satisfactory regression power. The lift for DBM is around 6% higher. It
is considered to be significant, although not dramatic. It indicates that DBM is
more capable in differentiating the worst from the population.

Combining both analyses, we can deduce that both models are predictive on
average. However, the GLM shows a higher error with the actual outcome.

5.3. DBM vs GBM. Guelman [19] uses the same dataset to test the performance
of GBM. Since there is no Tweedie distribution for GBM and Poisson fitting in
GBM was not satisfactory, Bernoulli distribution was used for claim frequency and
square loss was used in severity modeling. To address the issue of high proportion
of 0, Guelman [19] applied a under-sampling technique. The technique basically
generates a bias strata sample that results in higher proportion of non-zero observa-
tions. The modeling inevitably takes more time, due to additional data processing
and modeling, to obtain outputs. Also, Logit-link in Bernoulli fitting implies the
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Figure 6. Prediction accuracy of DBM relative to GLM (based
on test sample)

Figure 7. Lift plots for DBM and GLM

output is not in multiplicative form. It makes the output less appealing and intu-
itive in pricing.

The same approach is used to compare DBM with GBM. The conclusion is
similar but the difference is much less vivid.

6. Discussion

In this paper, we described the theory of Delta Boosting and its application to
actuarial modeling. DBM is presented as an additive model that sequentially fits
a relatively simple function (weak learner) to the current residuals by loss mini-
mization. Practical steps in building a model using this methodology have been de-
scribed. Estimating loss cost involves solving regression and classification problems
with several challenges. The large number of categorical and numerical predictors,
the presence of non-linearities in the data and the complex interactions among the
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Figure 8. Lift plots for DBM and GBM

Figure 9. Prediction accuracy of DBM relative to GBM (based
on test sample)

inputs is often the norm. In addition, data might not be clean and/or contain
missing values for some predictors. DBM fits very well this data structure. First,
based on the sample data used in this analysis, the level of accuracy in prediction
was shown to be higher for DBM relative to the conventional Generalized Linear
Model approach and GBM. This is not surprising since GLMs are, in essence, rela-
tively simple linear models and thus they are constrained by the class of functions
they can approximate. Second, as opposed to other non-linear statistical learn-
ing methods such as neural networks and support vector machines, DB and GB
provide interpretable results via the relative importance of the input variables and
their partial dependence plots. This is a critical aspect to consider in a business
environment, where models usually must be approved by non-statistically trained
decision makers who need to understand how the output from the “black-box” is
being produced. Third, GB requires very little data preprocessing which is one of
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the most time consuming activities in a data mining project. Lastly, models selec-
tion is done as an integral part of the GB procedure. The abundance of diagnostics
in GBM helps model users to improve its model. The ability to impose monotonic
constraints to specific variables further empower the users to provide feedback to
the model.

In short, Delta Boosting offers a good alternative to Generalized Linear Models in
building insurance loss cost models. In the experience of using DBM, the authors
see a few potential improvement in modeling. The first one is the flexibility to
specify interaction constraints. Data-mining is known as a powerful tool to discover
interaction. However, it is exactly this feature contributes to the over-fitting. When
variables are allowed to interact at multiple levels, the modeled interactions usually
are noises. Currently, there is no flexibility for users to tell the machine not to
interact certain variables or force a particular interaction pattern. The simplicity
of base learners in boosting machines should be able to cater for the need. The
second one is an analog to GLM diagnostics. There are a lot of diagnostics available
in boosting machines. However, they are more towards visual than theoretical. The
analog to well-studied diagnostics is strongly desirable in actuarial community as
it can significantly relieve the nerves for most actuaries. It took a long transition
for regulators to accept GLM even in mature markets like US. If analogs exist,
a big barrier in application can be easily removed. The last recommendation is
the bagging of parameters. This is a similar to the concept in random forest. In
each iteration, boosting utilizes bagging of observations to select a fraction of data
in the model. Different data are used in each iteration. If there is a categorical
variable with many levels, boosting machine likely pick that parameter many times
due to correction and overshooting. A bagging of parameters can suppress this
phenomenon significantly.
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Appendix A. GB and DB Algorithms for Poisson and Tweedie

This appendix presents the head-to-head comparison between the two algorithms
for Poisson and Tweedie distributions.

GBM

1: f0 = ln(
∑M

i=1 yi
M )

2: for t = 1 to T do
3: ri = yi − eft−1(xi)

i = {1, . . . ,M}
4: Find the best split at to form

J partitions using standard
CART approach.

5: βt =
∑
y∑

exp ft−1(x)

6: Update ft(x) = ft−1(x) +
βth(x; at)

7: end for
8: Output f̂(x) = fT (x)

DBM

1: f0 = ln(
∑M

i=1 yi
M )

2: for t = 1 to T do
3: ri = yi − eft−1(xi)

i = {1, . . . ,M}
4: Find the best split at to form

J partitions using standard
CART approach.

5: βt =
∑

(y−exp ft−1(x))
Mj

6: Update ft(x) = ft−1(x) +
βth(x; at)

7: end for
8: Output f̂(x) = fT (x)

Table 4. GB and DB algorithms for Poisson

Table 4 shows two algorithms for poisson side by side. It is noted that line 5
of DB algorithm is a by-product of at derivation from line 4. Thus, no additional
calculation is required.

GBM

1: f0 = ln(
∑M

i=1 yi
M )

2: for t = 1 to T do
3: ri = yi − eft−1(xi)

i = {1, . . . ,M}
4: Find the best split at to form

J partitions using standard
CART approach.

5: βt =
∑

(ye(ft−1(x)∗(1−p)))∑
e(ft−1(x)∗(2−p))

6: Update ft(x) = ft−1(x) +
βth(x; at)

7: end for
8: Output f̂(x) = fT (x)

DBM

1: f0 = ln(
∑M

i=1 yi
M )

2: for t = 1 to T do
3: ri = yie

ft−1(x)(1−p) − eft−1(x)(2−p)

i = {1, . . . ,M}
4: Find the best split at to form

J partitions using standard
CART approach.

5: βt =
∑
ri

Mj

6: Update ft(x) = ft−1(x) +
βth(x; at)

7: end for
8: Output f̂(x) = fT (x)

Table 5. GB and DB algorithms for Tweedie

Table 5 shows two algorithms for Tweedie side by side. It is noted that line 5
of DB algorithm is a by-product of at derivation from line 4. Thus, no additional
calculation is required.
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