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Abstract. We describe the Generalized Additive Family which 
covers Generalized Linear Model, Generalized Additive Model, Neu- 
ral Network and Boosting and more. We outline the theoretical 
features of each member, along with the corresponding implica- 
tions on actuarial applications. A complete procedure that details 
the data-scrubbing, preliminary data diagnosis, variable selection, 
model selection and model diagnosis is presented for each family 
member to model claim frequency for a set of real life data. This 
paper aims to provide a robust framework to actuaries on how 
multiple modeling techniques can help enhance the credibility of 
popular pricing models. 

 
1. Introduction 

Predictive modeling has gained immense popularity in information 
analytics. In marketing, predictive models are used to derive cross- 
sales or up-sales opportunities, and catalogs are aligned to enhance 
customers’ shopping experience. In hotel or fl t bookings, predictive 
models are used to vary prices by the time booked or by classes of the 
product. In search engines, models are built to best match what users 
need; for example, time spent on the selected site is heavily analyzed as 
a benchmark of matching. In Bio-statistics, models are used to predict 
clinical results, and quality of life has significantly improved for many 
patients because of accurate prediction of required formula ingredients. 
In short, the ability of information analytics and predictive modeling 
to make accurate predictions has transformed society. 

Many predictive modeling techniques have been developed to fi the 
great variety of applications that have arisen. Popular modeling choices 
include Support Vector Machines, Boosting, Random Forests, Artifi- 
cial Neural Networks and Classification and Regression Trees, with each 
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option diff somewhat in how the modeling problem is framed and 
how the prediction is derived. Support Vector Machines, for example, 
transform the original data space into a higher dimensional space so 
that the data is linear decomposable. Classification and Regression 
Tree provides decisions through simple branch type fl w charts (Figure 
2). Boosting and Random Forests ensemble base learners, e.g. decision 
trees, into a predictive model. Artificial Neural Networks attempt to 
mimic how a neural system would process the information. All these 
models aim to extract patterns between the explanatory variables and 
the response; the real pattern is generally high dimensional, meaning 
that some combinations among explanatory variables exert unique in- 
fl on the response. The modeling techniques are thus sometimes 
called data mining, machine learning or high dimensional modeling. 

Information analytics in actuarial science are evolving as well. Ac- 
cording to the 2013 predictive modeling benchmarking suvery by Tow- 
ers Watson, 71 percent, compared to 67 percent in 2012, of North Amer- 
ican personal insurers indicated that some form of predictive analytics 
are either in place will be in place in the next year. The numbers have 
been increasing over time, and the numbers are even higher in Europe 
due to more competitive operational environments. 

While actuaries believe they are fully embracing the advanced mod- 
eling technologies, discussions in the insurance industry are still heavily 
biased towards the application of Generalized Linear Models (GLM). 
Publications on how to apply GLM for pricing, reserving, demand, 
economic capital models are numerous [1, 8, 20] and techniques that 
help reduce extreme predictions from GLMs are popular topics at ac- 
tuarial conferences. However, high dimensional techniques are not yet 
prevalent among actuaries. 

Several factors contribute to the actuarial bias towards GLM instead 
of higher dimensional techniques. Firstly, insurance is a highly regu- 
lated industry in North America and Asia. The regulators have a man- 
date to assess the reasonableness of proposed pricing processes, but this 
assessment is diffi if regulators do not have a working understand- 
ing of the submitted process. GLM is a fairly mature topic in Statistics 
and standardized packages are available in many statistical engines like 
SAS and R; there are even software packages specifically designed to 
engineer GLM models for insurance applications. So, while GLM mod- 
eling choices and selections must still be supported and/or defended, 
there is enough documentation of the process itself that regulators can 
be convinced of its reasonableness. In contrast, the ”black box” nature 
of data mining process makes those assessments diffi Algorithms 
are not easily presentable as they can be quite complicated, and may 
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be counter-intuitive from a non-statistical perspective. These methods 
also lack theoretical diagnostic tools due to their non-parametric na- 
ture. Even within each technique there are many subtle variations that 
are not fully reviewed by the statistical community. All of these issues 
contribute to regulatory resistance to high-dimensional modeling. 

Secondly, the insurance industry includes many professionals other 
than actuaries. Underwriting, Marketing, Sales and other functions are 
also involved in the pricing process, with varying levels of statistical 
training, such that all of the concerns outlined above for regulators can 
also apply within the company itself. 

Lastly, most insurers’ rating engines are only capable of reading a 
limited number of tables. While algorithms from data mining tech- 
niques can generally be decomposed into tables, the number can easily 
go into the thousands. The space required to store these tables and the 
capacity to audit table accuracy is a significant operational challenge 
to the IT infrastructure. 

Despite these drawbacks, there is tremendous value in exploring high 
dimensional modeling in the insurance industry; data mining tech- 
niques can significantly outperform GLM if there are strong interac- 
tions among variables, which is commonly the case for insurance data. 
Data mining can detect interactions, select variables and handle miss- 
ing values simultaneously within the modeling process. The degree of 
improvement of data mining over GLM varies with the experience and 
judgment of the modeler, but leveraging features of data mining tech- 
niques will make the pricing process more efficient and effective. The 
practice also resonnates the Statement of Principles regarding Property 
and Causaulty Insurance Ratemaking by Casualty Actuarial Society: A 
number of ratemaking methodologies have been established by precedent 
or common usage within the actuarial profession. Since it is desir- 
able to encourage experimentation and innovation in ratemaking, the 
actuary need not be completely bound by these precedents. 

All discussions about modeling techniques starts with a formal def- 
inition of the problem to be solved. Section 2 defi that problem. 
Section 3 contains a more detailed description on the selected models, 
highlighting the diff and similarities between GLM and data 
mining. 

Using real life pricing data as an illustration, Sections 4 and 5 outline 
how a modeling process is adapted to combining insights from various 
modeling techniques, as well as describe our approach to data scrub- 
bing, variable selection, model selection and diagnostics. 
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2. The problem: Function Approximation 

Actuarial ratemaking applications attempt to model key values such 
as claim frequency and severity, conversion and retention. These mod- 
els are classified as supervised learning, which means a response is to be 
predicted. Non-supervised learning models do exist, such as Cluster- 
ing, but our discussion will focus on supervised learning with a clearly 
defi     response. 

Mathematically, a system of data contains entries with response vari- 
ables, y, and corresponding predictive co-variates, x = {x1, x2, . . . , xk }. 
The co-variates and response are assumed to be linked by an unob- 
served mapping F and a user-specifi strictly monotonic link func- 
tion, g(·). The goal is to fi an estimate function F ∗ that minimizes 
a specified loss function Φ(y, F (x)), mathematically represented as 

 

F ∗(x) = argmin Ex[Ey (Φ(y, F (x))|x)] (1) 
F (x) 

 

Not every function is a loss function. A loss function should fulfill 
the following conditions. 

Definition 1. A function, Φ(y, F (x)), is a loss function if it satisfies 
all the following conditions. 

(1) Identifiable: if Φ(y, F1(x)) = Φ(y, F2(x))  ∀y, F1(x) = F2(x). 
(2) F-convex: Φ(y, F (x)) is convex on F (x) and is strictly convex 

at Fmin(x) where Fmin(x) = argminΦ(y, F (x)). In the problem 
F (x) 

of function estimation, Fmin(x) = g(yi). 
(3) Y-convex: Φ(y, F (x)) is convex on y. 
(4) Closed: The set where Φ(y, ·) is defined is closed. 

Condition (1) ensures identifiability which is a property that a model 
must satisfy in order for precise inference to be possible. Condition (2) 
and (3) guarantee that any loss function is a measure of distance. If 
F1(x) > F2(x) ≥ y ≥ F3(x) > F4(x), then Φ(y, F1(x)) > Φ(y, F2(x)) 
and Φ(y, F3(x)) < Φ(y, F4(x)). Condition (4) is necessary to guarantee 
the end points are included in the parameter space. 

The  prediction ŷ is equal to g−1(F ∗(x)). Loss functions can be 
generic or specific to various types of problems. For example, Random 
Forest uses squared error for all types of problems whereas gradient 
boosting allows for Huber loss, deviance, absolute error and many oth- 
ers as loss functions [16]. The most commonly used loss functions in 
actuarial predictive modeling is deviance. Deviance, D, is a negative 
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linear transformation of loglikelihood, ll. 

D =   −2ll + C (2) 

where C is a constant. Thus, minimizing the deviance is equivalent to 
maximizing the log-likelihood. Since our goal is to provide a platform 
to compare model performance in actuarial applications, deviance will 
be used throughout this paper. Interested readers can refer to Lee [30] 
for a more detailed study of alternative loss functions. 

 
3. Model Candidates: Family of Generalized Additive 

Models 

The family of generalized additive models covers many existing so- 
lutions to the function approximation problem due to its generality. 
Mathematically, the class consists of an algorithm that is represented 
in the following form: 

 
J 

F ∗(x) = g(     fj (x)) (3) 
j=1 

Each family member uniquely has its unique way to specify the basis 
function and assigns parameters, which distinguish itself from other 
members. The basis function, also known as the base learner, and 
parameters are combined to form fj (x). Key features of the members 
used in the modeling are described in the following subsections. Each 
subsection will end with some suggested reference for interested readers. 

 
3.1. Generalized Linear Models (GLM). As explained in Section 
1, GLM is the most popular predictive modeling technique in actu- 
arial community. It was formally introduced in 1972 by John Nelder 
and Robert Wedderburn [35] and was intended to serve as a general- 
ization of linear regression, logistic regression and Poisson regression, 
the major statistical models back then. Minor extensions, including 
generalized estimating equations, generalized linear mixed model and 
generalized linear interaction model, are proposed to address issues 
when independence assumption is violated. 

The basis function is the individual variable xi and the parameter 
βi is estimated base on maximum likelihood approached. Together, 
fj (x) = βjxj  and, 

J 

F ∗(x) = g(       βjxj ) (4) 
j=1 
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GLM is the only parametric member among all candidates we discuss 
from the Generalized Additive Family. Parametric modeling assumes 
the data comes from a type of probability distribution and makes sta- 
tistical inferences about the parameters, with the form known apriori, 
of the distribution [18]. Independence and linearity assumptions are 
made to derive the parameters. If all the assumptions are correct, 
GLM can produce precise estimates. However, those assumptions are 
in general violated in actuarial pricing and results can be misleading 
in this situation. 

Suggested reference: Anderson et. al. [1], Geisser and Johnson 
[18], Haberman and Renshaw [20], Hardin and Hilbe [22], Hastie et. 
al. [24], McCullagh and Nelder [32], Nelder and Wedderbun [35] 

3.2. Generalized Additive Models (GAM). Developed by Hastie 
and Tibshirani [23], GAM were to extend GLM. The evolution is 
motivated by occasional unsatisfactory performance of GLM due to the 
linearity constraint. This constraint creates extreme predictions when 
the value of the explanatory variable at both ends of the the range and 
thus not desirable in extrapolation. Regularization techniques, LASSO, 
Ridge Regression and Elastic Net, are established alternatives that 
penalize high betas that trigger the issue. However, the improvement 
comes with the sacrifice of the overall predictive accuracy. 

The GAM version of Equation 4 is 
 

J 

F ∗(x) = g(       βjf (xj )) (5) 
j=1 

where f (xj ) is some smooth function to be estimated. The most com- 
monly used smoothing function is the spline function. A spline is made 
up of piece-wise polynomials that satisfy certain criteria. Details re- 
garding the criteria can be found in the suggested reference. Since 
the smooth function can be in numerous forms, including a straight 
line, the assumption of linearity is relaxed. The parameter estimation 
method in Hastie and Tibshirani [23] was a back-fitting algorithm. In 
back-fitting algorithm, the formula and variables are specified prior to 
the model fi The values of parameters are iteratively adjusted un- 
til the loss/error converges. On the contrary, forward-fitting algorithm 
iteratively adds variables and adjustment to the formula and thus does 
not require upfront specifications. The mechanism is described in more 
details in Section 3.4 

Suggested reference: Hastie and Tibshirani [23], Hastie et. al. [24], 
Wood [45, 46] 
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3.3. Artificial Neural Network (ANN). ANN has its origin in 
1943. As indicated by its name, ANN is inspired by how our neu- 
ral network works. Information/Input is decomposed into the various 
explanatory variables and stored in the neurons. The information from 
input neurons are then aggregated and processed by neuron in the 
next layer. The receiving neuron will serve as the input neuron for the 
following layer and the process will continue until the output layer is 
reached. Any layers between the input and output layers are called 
hidden layers. 

 
 
 

 
 

Figure 1. Concept of Neural Network from Glosser.ca 
 
 
 

Equation 6 shows the mathematics for the information processing at 
a layer, with g(·) the activation function and wi the information weight. 



WHY HIGH DIMENSIONAL MODELING IN ACTUARIAL SCIENCE? 8 
 

∗ 

k 

 
 

J 

fk (x) = g(wk0 +      wkjxj ) (6) 
j=1 

K 

F ∗(x) = g(w0 +     wjf ∗(x)) (7) 
k=1 

This candidate has had tremendous successes in the fi of pat- 
tern recognition and machine learning. Many of the international 
competition winners are variations of the original ANN. http://www. 
kurzweilai.net/how-bio-inspired-deep-learning-keeps-winning- 
competitions captures an interview with Jrgen Schmidhuber on the 
eight competitions won using ANN. The popularity is spread to Fi- 
nance, Economics and Actuarial Science as well [2, 3, 11, 25, 26]. Ven- 
dor solutions are also available to actuaries. 

Suggested Reference: Hastie et. al. [24], McCulloch and Pitts [33] 

3.4. Gradient Boosting Machine (GBM). Adaptive Boosting [12] 
is the fi success of boosting algorithms. It became a popular classifi- 
cation tool in late 90’s to early 00’s. Brieman [5, 6] later explained the 
algorithm as a gradient descent approach with numerical optimization 
and statistical estimation. Friedman et. al.  [15] further extend the 
idea and introduces a few similar sibling models for comparison. The 
crux of the algorithm is to iteratively minimize a transformed distance, 
deviance or other loss functions, between the actual observation and 
the corresponding prediction. 

Friedman [16] proposes a boosting method called Gradient Boosting 
Machine. It extends the boosting capacity by featuring solutions to re- 
gression problems. It is considered to be a significant breakthrough as 
boosting was limited to classification before GBM. The algorithm suc- 
cessfully includes statistical elements, such as additive modeling and 
maximum-likelihood, in the modeling technique. By doing so, the au- 
thors were able to derive diagnostics to assess the quality of the pre- 
dictions. The existence of the statistic based diagnostics substantially 
blurs the boundary between machine learning and traditional statisti- 
cal modeling. 

It is also shown in Hastie et. al. [24], using empirical examples, that 
GBM is the top-tier predictive model among data mining techniques. 
In today’s world where computing power is less an issue, predictive 
power is clearly the top concern. The simplicity of the algorithm, 
critical in predictive modeling, is also inspiring more research that could 
lead to even more powerful extensions. 

http://www/
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t 

t 

i=1 

 

The GBM version of Equation 4 is 
 

T T 

F ∗(x) =       f ∗(x) =       βth(x; at) (8) 
t=1 t=1 

Although any weak rule, f ∗(x), alone would not be strong enough to 
make accurate predictions on all observations, it is possible to combine 
many of those rules to produce a highly accurate model. This idea 
is known as the the strength of weak learnability [39]. It was 
originated in the machine learning community with the introduction of 
AdaBoost [12, 13], the fi   major success of boosting algorithms. 

The estimation of the parameters, βt and at, in (8) amounts to solv- 
ing 

 

N 

argmin       Φ 
( T \ 

yi ,     βth(xi; at) 
 

(9) 
βt,at i=1 t=1 

Boosting adopts the approach of forward stage-wise method that solves (9) 
by sequentially fi a single weak learner and adding it to the expan- 
sion of previously fi  terms. The corresponding solutions of each new 
fi term is not readjusted as new terms are added into the model. 
This characteristic is commonly called adaptive and is outlined in Al- 
gorithm 1 [15]. 

 
 

Algorithm 1 Forward Stagewise Additive Modeling 
1: Initialize F0(x) 
2: for t = 1 to T do 
3: Estimate  βt and  at by   minimizing   

),N
 

 
 
 
Φ(yi, Ft 

 
 

−1(xi) + 
βth(xi; at)) 

4: Update Ft(x) = Ft−1(x) + βth(x; at) 
5: end for 
6:  Output F̂ (x) = FT (x) 

 
 

 

Suggested Reference: Brieman [7], Freund and Schapire [12], Fried- 
man et. al. [15], Friedman [16, 17], Hastie et. al. [24], Lee [30], Ridge- 
way [37], Schapire [39], Sun et. al. [40] 

3.5. Delta Boosting. Lee [30] proposes Delta Boosting Machine 
(DBM), a modifi to GBM, that better utilizes the base learner. 
Lee proves that DBM is the optimal boosting algorithm for many com- 
mon distributions and asymptotically optimal for the rest. A few em- 
pirical examples are illustrated in the paper to show how DBM outper- 
forms GBM. 
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The primary diff between DBM and GBM is their sorting rules. 
In GBM, the gradient of each observation is used as the sorting element: 1 

∂Φ(yi, F (xi)) 
l
 

ri = − ∂F (xi)  F (x)=Ft−1(x) 
, i = {1, . . . , M } 

whereas DBM attempts to reduce the deviance to the maximum extent 
at each iteration and thus the minimizer also called delta is used in 
sorting: 

δi = argmin Φ(y, Ft−1(xi) + s), i = {1, . . . , M } 
s 

The ways on how the data is partitioned also vary slightly. Interested 
readers can fi   details in Lee [30] 

3.6. Classification and Regression Tree. Since its introduction in 
Brieman et. al. [4], Classification and Regression Tree(CART) has 
been incorporated to some degree in almost all analytical fi Either 
used standalone or as elements of ensemble methods, CART creates 
predictive model through iteratively partition the data through logical 
decisions. Figure 2 represents a typical CART output. 

 

 

Figure 2. Typical CART output 
 

The vast popularity of this technique is due to its appealing fea- 
tures. It is simple to understand and interpret, requires little data pre- 
processing, handles numeric, categorical and missing data, performs 
well on large data and provides statistical diagnostics. 
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Suggested Reference: Brieman et. al. [4], Hastie et. al. [24], 
Quinlan [36], Rokach and Maimon [38] 

 
3.7. Other modeling techniques. There are many more techniques 
that actuaries can fi useful.  To name a few, K-nearest neighbor 
(KNN), Multivariate Adaptive Regression Splines(MARS), Naive Bayes, 
Random Forest (RF) and Support Vector Machines (SVM) all have 
strong presence in various fi of application. However, we limit the 
scope of the paper to the analysis to the candidates described in the 
previous subsections. 

 
4. The Data 

This paper uses real-life data from a Canadian insurer. It consists of 
policy and claim information at the vehicle level for Collision coverage 
in a particular province. Collision coverage covers insured from the cost 
of repairing or replacing their vehicles in the event that the covered 
vehicles hit another vehicle, or any object in or on the ground. 

The data set includes the experience for calendar/accident years 2001 
to 2005.  The response to be predicted is the claim frequency.  The 
data includes 290,147 earned exposures and an overall claim frequency 
of 4.414%. Although the number falls into the typical industry range 
of 4% to 8%, this represents an imbalanced or skewed class distribu- 
tion for the target variable under most of the modeling standard. This 
commonly hinders the detection of claim predictors and eventually de- 
creases the predictive accuracy of the model [40].  Thus, a rigorous 
exploratory data analysis and variable selection process are more infl 
ential to the outcome of the modeling. 

 
4.1. Exploratory Data Analysis (EDA). Actuaries should should 
consider an EDA as a significant component in any modeling process. 
As Tukey  [41, 42, 43] defi       EDA is an attitude, a fl y, and 
a reliance on display, NOT a bundle of techniques. It contrasts with 
standard predictive modeling techniques, also known as confirmatory 
data analysis, where the process is easier to computerize. The heart of 
EDA is the willingness to look for what can be seen, which cannot be 
replaced by any fancy predictive models. 

As stated in the philosophy, there is no set rules on how to formal- 
ize the process. However, actuaries are encouraged to consult experts 
from underwriting, sales, IT and claims to get a comprehensive un- 
derstanding of the inputs. Readers can fi more details about the 
questions actuaries commonly ask on [14, 44]. Actuarial Standards of 
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Practice Document Number 23 also describes actuaries’ responsibility 
when using data from external sources. 

The visual tools required are dependent on the problems and style of 
actuaries. Whilst it is not meant to be exhaustive, actuaries may fi 
the following tools handy for typical personal auto pricing purposes. 

Scatter Plots: Laying the response variable against each explana- 
tory variable is the most intuitive way to visualize the dependence ef- 
fects. The graphs also provide insights to actuaries whether linear 
assumption is appropriate and if not, whether a transformation is ap- 
propriate. 

 

 

Figure 3. Scatter Plots 

 
One key shortcoming of standard scatter plots stand out when a 

large data set is used. Figure 3a displays the scatter plot of the claim 
count against years licensed of insured. The graph does not reveal 
much information except for the range of claim counts (from 0 to 4) 
and years licensed (0 to 60). Figure 3b presents the same relationship 
at a summarized level. The claims counts aggregated at each level of 
years licensed. The pattern is more meaningful: the negative trend 
prevails until the far right end of the spectrum. 

With the advancement of plotting techniques, actuaries can extract 
more information on the same plot. Figure 3c utilizes bubble plotting 
and simple smoothing techniques. The size of the each bubble (point) 
is proportional to the exposures aggregated. The scale is shown to 
further facilitate the assessment. Smoothing provides a simple visual 
illustration of the trend. Actuaries can choose the degree of polynomial 
to be fi In Figure 3c, a degree 2 polynomial is used. The 95% 
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confidence interval is also plotted in gray. Using these tools, actuaries 
can more confidently conclude that most of the observations follow the 
trend and the reversal of pattern may not be statistically credible. 

We stretch the capacity further by plotting the pattern by gender 
of the insured in Figure 3d. The pattern reveals that female drivers 
generally incur fewer claims at every years licensed, but that the gap 
between men and women shrinks from 0 years licensed to around 35, 
where it begins to expand again. 

While we can always add more information to the standard plots, it 
is dangerous to abuse the graphing capacity. If the graphs convey too 
much information to a point that actuaries are distracted from the key 
messages, the original purpose of using graphs as a simple and quick 
tool is lost. 

Time Consistency Plots: One of the goals of actuarial pricing 
is to derive a breakeven loss cost for any risk that the insurer will un- 
derwrite in the future. The data usually comes from 3 to 5 years of 
experience; for catastrophic risk, the experience period can be extended 
to more than 10 years. Mahler [31] shows that the correlation of results 
drops fairly significantly as the time diff between the experience 
and prediction period increases. Thus, time consistency plot can be 
essential to decide whether the general pattern between explanatory 
variables and the response deteriorates through time. If the relation- 
ship is not consistent through time, it is customarily discarded from 
the modeling. 

From Figure 4, the pattern is very consistent from AY3 to AY5. AY 
is an abbreviation of Accident Year and 5 indicates Year 2005. Since 
the consistency exists in the latest experience years, we are comfortable 
to select the negative trend for this factor. We should also consider if 
3 years of experience should be used instead of 5 when similar pattern 
is observed for other key rating variables. 

Histograms: Contrary to scatter plots, histograms are used to 
analysis the exposure distribution. Actuaries can examine if obser- 
vations are clustered at a few levels or widely spanned, which helps 
actuaries to group observations if necessary. 

From the assessment in Figure 3 and 5, actuaries may consider group- 
ing observations with years licensed over 35 years. Readers should be 
warned that one-way analysis like EDA only provides a preliminary 
insight of how a variable should be handled. The pattern can be con- 
taminated by dis-proportionate distribution of other variables. Using 
years licensed effect as an example, the reversal at the right end may 
likely be contributed by more senior drivers who are less physical sharp 
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Figure 4. Time Consistency Plot for Years Licensed Effect 
 

to handles road emergencies. If the model contains both variables, the 
reversal effect will be offset by increasing loss tendency by age. 

Correlation Plots: Correlation Plots are sometimes known as 
scatter plot matrices. It is a collection of scatter plots, histograms and 
correlations. It aims at condensing all the mentioned graphs into a few 
pages. A popular correlation plot looks like the plot below. 

Similar to the logic we adopted for scatter plots, we aggregated the 
exposure by the horizontal axes to help visual the underlying trend 
between each pair of variables. Driving record is derived based on years 
licensed, conviction and accident history. Thus, it is expected that the 
driving record is positively correlated with years licensed. Driver’s age 
also trends the same direction with years licensed. The plot confirms 
the intuition nicely. 

Principal Components: Just as shown in the Figure 6, many 
explanatory variables are correlated in auto pricing. This phenomenon 
adversely affects the quality of modeling in general as it likely induces 
extremely positive and negative coefficients that offset each other. Prin- 
cipal components(PC) are created to transform elements into linearly 
uncorrelated variables. The transformation is done through iterative 
eigen decomposition such that the early components always explains 
more variability of the data. Actuaries are thus able to compress the 
list of variables going into modeling stage by dropping the variables do 
not significantly explain the variability of data. 
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Figure 5. Histogram for Years Licensed Effect 

 
Using the variables in correlation matrix as an example, the principal 

components derived are 
 

 PC 1 PC 2 PC 3 
Years Licensed -0.67 0.73 0.12 
Driving Record -0.07 0.11 -0.99 

Age -0.74 -0.67 -0.02 
Variability Captured 0.88 0.11 0.01 

 
The fi 3 rows are the linear transformation vectors from original 

data to the Principal components. The last row shows that the fi PC 
accounts for 88% of the variability and the third PC only accounts for 
1%. The exercise can be expanded to all numeric variables. Actuaries 
should note that PCA assume all variables are in the same scale. Using 
driving record as a counter example, while the numbering indicates the 
relative order, the diff between levels has no meaningful inter- 
pretation. Using PCA on this variable without adjustment may result 
in distortion of prediction. 
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Figure 6. Correlation Plots for Years Licensed, Driving 
Record and Driver’s Age Effect 

 
4.2. Preliminary Variable Selection. A good EDA gives actuaries 
a clear picture about the data and which variables should be selected for 
modeling. A predictive variable usually exhibits a clear pattern against 
the response. The pattern needs not to be straight line or monotonic. 
For example, it is well known that driving behavior improves when 
insured ages from early stage of life due to the accumulation of driving 
experience. The behavior is reversed at older stage as senior drivers 
have a slower reaction time. We shortlist around 30 out of more than 
200 variables for the modeling. 

It should be noted that while this is not the only place that for vari- 
able selections, a robust selection should leave actuaries with only a 
handful of variable combinations for modeling. Leaving too many op- 
tions to modeling stage will significantly lengthen the modeling process 
and likely result in overfitting eventually. 

 
4.3. Data with unusual values. Real-life data is seldom perfectly 
clean. Contamination comes from inaccurate information from the in- 
sured, omission from the agents, system errors, mismatch from external 
source etc. The contamination in turns will affect the quality of results. 
Thus, a robust process to validate the quality of data is necessary. 

Many mistakes can be easily spotted, negative years licensed and 
ages for examples.  Thus, the fi   step of validity check is the check 
if any levels are not prescribed in the systems. Other checks may 
require more understanding of data. The issues only become apparent 
when a few fi      are jointly considered. For example, in most of the 
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jurisdictions, there is a minimum age requirement for obtaining driver 
license. In the jurisdiction that we are modeling, the minimum age 
is 16. Thus, an observation with a 20 year old driver with 8 years 
of driving experience should be investigated. While each fi looks 
reasonable when considered individually, obtaining license at age 12 
does not look reasonable in this case. Other checks include, but are 
not limited to, checking 

(1) the number of vehicles insured to confirm the discount on in- 
suring multiple vehicles. 

(2) the age of vehicle when it was purchased to confirm the model 
year is accurate. 

(3) the number of years insured to confirm the years licensed. 
(4) the address to confi the territory of the insured. 

Missing Values: Some predictive modeling tools, built-in GLM 
package in R for example, require all fi  to be complete. Actuaries 
thus have to react to the situation when the data consists of some 
missing values. There are a few common rules of thumb that attempt to 
solve the problem: Replacing the missing values with the fi average, 
creating a new variable that indicates the value for the observation is 
missing, fi a proxy to approximate the value from other variables 
or even deleting the observations. In the data that we are using, there 
are around 1200 observations, less than 0.15%, that have missing fi   
The observations are deemed insignifi t and deleted for this modeling 
purpose. 

 

5. Collision Frequency Models 

We use GLM, GAM, ANN, GBM, DBM and CART as the candi- 
dates for the frequency model. To compare the performance of the 
competing techniques, we partitioned the data into train (80%) and 
test (20%) data sets through random sampling. The train data is used 
for modeling while the test data is used as an independent source to 
verify the performance. For models that requires intermediate vali- 
dation data, the train data is further split into pure train (80%) and 
validation (20%) of the train data. Since we have a ex-ante belief that 
the claim count follows the Poisson distribution, Poisson deviance is 
used as the basis of performance. The best model should have lowest 
deviance among the candidates in the holdout data. 

The following table displays the variables selected for the modeling. 
The names of all variables are masked in the rest of the paper, but 

that has no significant impact on understanding the results presented. 
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Table 1. Overview of Loss Cost predictors 
 

 

Driver Characteristics Accident/Conviction 
History 

Policy characteristics Vehicle characteristics 

 

 

 

DC1. Age of principal 

operator 

AC1. Number of 

chargeable accidents (6 
years) 

PC1. Years since policy 

inception 

VC1. Vehicle Rate Group 

DC2. Years licensed AC2.  Number of not 

chargeable accidents (6 
years) 

DC3. Age licensed AC3. Number of minor 

driving convictions (3 
years) 

PC2. Presence of 
multi-vehicle 

 

PC3. Collision 
Deductible 

VC2. Age of Vehicle 

VC3. Horse Power 

DC4. Driving Record AC4. Number of major 

driving convictions (3 

years) 

DC5. Dwelling unit type AC5. Number of criminal 

driving convictions (3 

years) 

PC4. Use of Vehicle VC4.  Weight 

 

 

PC5. Group business VC5. Suggested Retailed 

Price of Vehicle 

DC6. Aggregated Credit 
score 

AC6.  (Total, At-fault) 

Claims free years 

AC7. (Total, Minor, 

Major, Criminal) 

Convictions free years 

PC6. Presence of 
multi-line 

VC6. Number of Seats 

VC7. Wheelbase 

 
VC8. Vehicle Age at 
Purchase 

 
 

 

Table 2. Normalized deviance of competing models 
 

Model Train Deviance 

GLM 0.00 
GAM -359.69 
GBM -808.60 
DBM -1173.52 
ANN 4132.64 
CART 1343052.49 

 
5.1. Initial Run. Table 2 illustrates the deviance for all the candi- 
date models and the result falls within expectation. CART in general 
serves as a quick solution for simple decision. While regularization 
techniques like pruning and conditional can significantly improve the 
log-likelihood, CART can seldom rank fi in the group. GLM has the 
most restricted assumptions among other candidates, leading to lowest 
test likelihood in general. GAM still assumes independence among ex- 
planatory variables, except specifically included prior to the modeling. 
However, the joint effect can be significant in many real-life data. 

Readers might be surprised that ANN has a higher deviance than 
GLM. One main limitation of ANN is the infl y of loss function 
assignment. ANN models minimize least squares and thus the model 
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is not necessarily minimizing the Poisson deviance. Anderson et. al. 
[1] illustrates an example on how diff t loss functions impact the 
estimation of parameters. 

Boosting performs best among the candidates, with DBM better 
than GBM. It resonates the results shown in Lee [30]. We can utilize 
the likelihood ratio test to give a sense on how to interpret the mag- 
nitude of deviance. For two competing models, one nested by another, 
the diff of deviance between the models follows chi-square dis- 
tribution with the degree of freedom equal to the diff in number 
of parameters. For the diff between GLM and DBM considered 
to be statistically immaterial at 5% significance, DBM has to have at 
least 850 more parameters than GLM. For the case between GLM and 
GAM, GAM has to have at least 318 more parameters. 

In addition to the predictive performance, actuaries should also ex- 
amine the diagnostic tools available for each technique. For boosting, 
Lee [30] presents a rich variety of diagnostics that help actuaries to 
assess the diff t aspects of the model. Contrarily, ANN has only 
very few assessment tools, if any. 

We can also assess the performance of the candidates by utilizing 
the lift plot. Lift is a popular diagnostic tool in predictive modeling 
due to its intuition. To derive the statistic of a model, we sort the 
prediction and group the observations into 10 deciles. Lift is defi 
to be the ratio of the mean of the response in the top decile and the 
mean of the bottom decile. A high lift implies the model’s ability to 
diff tiate observations. In addition, lift plot is a plot of the aver- 
age responses against the average prediction over the 10 deciles. If the 
points are aligned with the line y = x, the model has a high predic- 
tive performance. Thus, the slope and R2 of the plot should both be 
assessed. 

 

 

Figure 7. Lift Plots for Train data 
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Figure 7 shows that ANN has a high lift. However, overfitting exists 
at the tail. The model has a average prediction of 13.4% on the top 
decile. The corresponding actual frequency is 11.2%. Thus, results of 
ANN may be adequate for underwriting purposes as only the relative 
order among insured is required. However, good pricing requires fair 
assessment of all risks throughout the book of business. Thus, both 
the relative order and exact magnitude of the loss cost will be required 
in this case. Over pricing of risks will likely result in clients leaving the 
book in a competitive market and under pricing of risks will result in 
adverse selection. The same issue also applies on CART. 

GLM, GAM, GBM and DBM predict the frequency fairly well on 
each decile as all the points are close to the x = y line. GBM and DBM 
have a higher lift than GAM which in turn having a higher lift than 
GLM. The result is consistent with what the likelihood table suggests. 

Since boosting, and ANN in certain aspects, performs better than 
GLM, it would be desirable if actuaries can use them to improve on the 
GLM model. However, ANN models data through multiple layers of 
neutrons and activation functions and inference on individual elements 
can hardly be extracted from this type of operation in a scientific way. 

Fortunately, there are many diagnostics available from boosting that 
are comparable to those commonly used in GLM. 

Variable Importance: After assessing the overall performance of 
each model, actuaries should then focus on which variables exert more 
infl on the model performance. In GLM, we use the t-statistics, 
which is the ratio between the coefficients and the corresponding stan- 
dard errors. However, it is not a perfect tool for categorical variables 
with n > 2 levels. In such case, n − 1 coefficients are derived, some 
maybe significant and some maybe not. Thus, the statistics describe 
the significance of parameters rather than variables themselves. Some 
actuaries may argue that it is a good enough proxy; however, in the case 
where all its levels have medium significance, the variable can become 
a significant one. Removing the variable simply based on individual 
value can results in significant deterioration of model predictive power. 

The boosting models, on the contrary, assess the elements at variable 
level. The likelihood improvement at each iteration is assigned to the 

each variable and improvements of all iterations are then aggregated. 
Figure 8 is a standard representation of relative importance of the 

boosting members. The importance is normalized such that the sum 
equals 100 for easier comparison. To see how the predictive perfor- 
mance by variables are aligned by diff t models, we put the corre- 
sponding ranking of GLM to the variable importance table of DBM. 
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Figure 8. Lift Plots for Train data 
 

Table 3. DBM Importance and corresponding GLM ranking 
 

Variable Importance GLM Rank 

Var1 22.80 7 
Var2 21.50 1 
Var3 9.10 20 
Var4 7.10 3 
Var5 5.90 2 
Var6 4.50 15 
Var7 4.20 11 
Var8 4.00 6 
Var9 3.50 13 
Var10 3.10 9 

 
Perhaps surprisingly, the rankings of the variables are fairly incon- 

sistent.  It gives actuaries a great opportunity to improve the GLM 
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models by comparing the diff tial plots of those variables that show 
vastly diff t rankings between models. 

Marginal Differential Plot: We illustrate the diff    tial plot of 
a variable that shows significantly diff ent ranking between GLM and 
DBM in Figure 9. The diff  ntial diff  very dramatically. It is likely 
due to the existence of another variable that has an co-linearity effect to 
this variable. GLM and GAM are not effective in this type of situation 
because coefficients are derived by inverting matrices. If the columns 
of the matrix are linearly dependent, then the matrix is singular and 
cannot be inverted. In the case where the column vectors are almost 
linearly dependent, then the inverse will have a high coefficients similar 
to what the graph indicates. 

 
 

 

Figure 9. Differential Plot 
 

A thorough investigation confirms that there are 2 other variables 
that jointly co-linear to the variable. They each has a high diff rential 
relative to what suggested by boosting. A solution is to create an 
interaction effect in GLM and GAM that tempers the multiplication 
effect. 

In some occasions, the signs of the parameters may be counter intu- 
itive. Actuaries should be extra cautious on this. There are two main 
causes of this situation: insignifi   t magnitude or co-linearity. The 
fi  cause can be handled by artificial assignment of fi   factors af- 
ter the modeling exercise is complete. The second cause requires more 
effort. If all of the highly correlated variables have to be kept in the 
rating algorithm, an interaction term may need to be introduced. An 
alternative is to impose an offset on one of the variables and re-run the 
model with the offset. Actuaries may also fi redefining or removing 
the variables necessary to guarantee an interpretable algorithm. 
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Joint Differential Plot: Besides co-linearity, boosting also has 
a built-in mechanism to addresses the interaction effect in the data. 
Friedman [16, 17] invents a H-statistic that quantify the interaction 
among variables. Using this mechanism, we calculate H-statstics for 
each pair of variables. The below shows the two that has the highest 
H-statistics. 

 

 

Figure 10. Lift Plots for Train data 
 

The left panel of Figure 10 shows that the spread of var2 diff tial is 
sharply increasing as var 1 increases. Adding a parameter that captures 
this effect will likely improve the predictive power of the GLM. 

The right panel shows another type of interaction. While the depen- 
dence is negligible in most part of the range, the diff  tial performs 
diff tly when var 1 is high and var 2 is low. Adding a parameter 
that for the block [70000,80000] X [5,20] should essentially capture the 
interaction. 

 
5.2. Final Run. The magnitude of improvement decreases as we drill 
down to the less significant variables or interactions. Over-fitting may 
also result when one attempts to temper the model too much. We 
consider reviewing 5 to 10 most significant variables and including 2 to 
4 interactions should warrant a model that is adequate for most pricing 
problems. Actuaries may also fi that several iterations of revision 
may be necessary as parameters of all variables will be revised to reflect 
new composition of the formula. 

We run the GLM again following the process described in the previ- 
ous subsections according to the iterative philosophy. At each iteration, 
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improvement in deviance is observed after modifi ions. Using like- 
lihood ratio test, where it is applicable, improvements are significant. 
The model turns out having considerably fewer parameters than the 
initial one due to removal of many highly correlated variables to reduce 
the co-linearity effect. 

We can now apply the results for all the candidates on the holdout 
data. Readers should be warned test data is the one and only inde- 
pendent benchmark in comparing all candidates and thus should not 
be accessed until results of all the model candidates are fi Else, 
actuaries selection will be biased by what is indicated by the test data. 
The original intent of setting aside the data will be lost. 

 
Table 4. Deviance of competing models by partition of data 

 
Model Train Deviance Test Deviance 

GLM 0.00 0.00 
GAM -359.78 -70.92 
GBM -808.60 -148.21 
DBM -1173.52 -188.66 
ANN 4132.64 1054.41 
CART 1343052.49 336436.83 
GLM Final -82.93 -30.00 

 
As Table 4 suggests, the deviance of fi GLM model improves 

significantly over the one at the initial run. For readers reference, for 
the improvment to be deemed as statistically insignifi   t at 5%, the 
fi version has to have 70 more parameters than the original one, 
assuming the original is nested by the fi one. However, as stated, 
the fi  version indeed has fewer parameters than the original ver- 
sion. The improvement in test data also confirms the superiority of 
the fi  model.  Actuary should conclude the modeling with one 
last re-run. The fi run models the full set of data to maximize the 
utility of the data. 

 
6. Concluding Remark 

We provide a simplified framework for actuarial pricing which in- 
volves data cleaning, exploring and modeling. Data quality is the key 
to the success of actuarial pricing. Data cleaning is the fi gate for 
actuaries to understand the inputs. It requires actuaries to have assess 
to various functional experts within the their organizations. 

Actuaries should not ignore the importance of exploratory data anal- 
ysis. Many tools are available to actuaries to visualize the interdepen- 
dence among data at no cost. The analysis will provide crucial clues on 
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whether certain variables should be included and how they should be 
included, whether with transformation or interaction, in the modeling. 

The complexity of data modeling is usually overlooked. Simply re- 
lying on the output of one model is generally insuffi t.   Inference 
from other models can help actuaries to tailor the pricing algorithm 
to best describe the data behavior. With careful investigation and 
modifi the improvement can be highly significant. In addition, 
the modeling procedure is usually recursive; modifi of the model 
should be done one variable at a time. It helps actuaries to visualize 
the impact of each change and actuaries may be rewarded by observing 
new inference that can further improve the modeling accuracy. Once 
comfortable with the fi model, actuaries should verify the results 
with an independent holdout data. It provides an additional layer of 

confidence to actuaries if the results go as expected. 
While the framework of a pricing process is presented, it is not meant 

to be exhaustive.  Actuaries will fi    modifi are necessary to 
reflect the nature of diff rent problems. For example, analysis of rating 
territories can be best visualized through a contour plot. Compound 
modeling is required where the geo-spatial residual is used for spatial 
smoothing. When new deductibles or limits are introduced, actuaries 
will be required to produce exposure rating or increase limit factor 
analysis to derive the appropriate diff    tials for the new levels. 
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