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Motivation: hierarchies (1)
• What is a 

hierarchy?
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Motivation: hierarchies (2)
• Example: the ANZSIC 

occupational codes

– A = Agriculture, Forestry 

and Fishing

• A1 = Agriculture

• A2 = Aquaculture

– B = Mining

• B6 = Coal mining

• B7 = Oil and gas 

extraction

• B8 = Metal ore mining

A
B

A1 A2
B8B7B6
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Motivation: hierarchies (3)
• There may be an 

observation at each 
node
– e.g. claim frequency

• One may wish to 
estimate the claim 
frequency parameters 
underlying these 
observations

• One can use hierarchical 
credibility
– Taylor (1979)
– Sundt (1979,1980)
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Motivation: static versus 

evolutionary hierarchies
• Suppose that claim 

frequencies at the node 

evolve over time

• Now a parameter estimate 

is required at each node at 

each point of time

• How?
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Graph theory (1)
• A graph ℋ is an ordered pair 

(𝑉 ℋ ,𝐸(ℋ)) consisting of a 
set 𝑉 ℋ of vertices, or 
nodes, and a set 𝐸 ℋ , 
disjoint from 𝑉 ℋ , of edges, 
together with an incidence 
matrix Ψ ℋ that associates 
with each edge of ℋ an 
unordered pair of (not 
necessarily distinct) nodes of 
ℋ.
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Graph theory (2)
• Incidence matrix

– Edge 1 is incident with nodes 1 and 2
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Example

Node

Edge

Node Edge

1 2 3 4 5 6

1 1 1 0 0 0 0

2 1 0 1 0 0 0

3 0 1 1 1 1 0

4 0 0 0 1 0 0

5 0 0 0 0 1 1

6 0 0 0 0 0 1

1
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4
5
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Graph theory (3)
• Adjacency matrix

– Indicates, for each node, which 
nodes are adjacent, i.e. related by 

a single edge
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Example

Node

Edge

Node Node

1 2 3 4 5 6

1 0 1 1 0 0 0

2 1 0 1 0 0 0

3 1 1 0 1 1 0

4 0 0 1 0 0 0

5 0 0 1 0 0 1

6 0 0 0 0 1 0
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Graph theory: tree
• A tree is special 

case of a graph 
in which any two 
nodes are 
connected by 
exactly one path

• A hierarchy is the 
same as a tree

Example

Root

Leaves
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Adjacency matrix for tree
Entire graph

• Graph is now directed

• Denote Γ ℋ

 

 

 

 

 

 A
B

A1 A2
B8B7B6

0

Sub-graph relating 

two levels

• Denote Γ ℋ2 where ℋ2

is the sub-hierarchy 

consisting of just levels 1 

and 2

0 A B A1 A2 B6 B7 B8

0 0 1 1 0 0 0 0 0

A 0 0 0 1 1 0 0 0

B 0 0 0 0 0 1 1 1

A1 0 0 0 0 0 0 0 0

A2 0 0 0 0 0 0 0 0

B6 0 0 0 0 0 0 0 0

B7 0 0 0 0 0 0 0 0

B8 0 0 0 0 0 0 0 0

A1 A2 B6 B7 B8

A 1 1 0 0 0

B 0 0 1 1 1
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Larger hierarchies (trees): 

labelling of nodes
• This hierarchy 

consists of a root 
(labelled 𝑖0 = 1) 
and 𝑞 levels
– This a 𝒒-hierarchy

• Nodes at level 𝑚
are labelled 
𝑖0𝑖1… 𝑖𝑚−1 𝑖𝑚, 𝑖𝑛 =
1,2, 𝑒𝑡𝑐. , 𝑛 =
1,2, … ,𝑚

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑖0𝑖1 𝑖01 

𝑖0 

𝑖0𝑖1𝑖2 𝑖0𝑖11 

𝑖0𝑖1𝑖21 𝑖0𝑖1𝑖2𝑖3 

𝑖0𝑖1… 𝑖𝑞−1 

𝑖0𝑖1… 𝑖𝑞−11 𝑖0𝑖1… 𝑖𝑞  

⋮ 



17

Overview
• Motivation

• Formal framework

• Hierarchical models
– Static

– Evolutionary 

• Kalman filter
– In general

– Application to hierarchical model

• Numerical example

• Conclusion 



18

Hierarchical model: notation

• Associate a parameter vector with each node

– Parameter vector at node 𝑖0𝑖1… 𝑖𝑚−1 𝑖𝑚
denoted 𝛽𝑖0𝑖1…𝑖𝑚

– 𝛽(𝑚) =

𝛽𝑖0𝑖1…𝑖𝑚−11

𝛽𝑖0𝑖1…𝑖𝑚−12

⋮

denotes vector of all 

parameters at level 𝑚

– 𝛽 =

𝛽(0)
𝛽(1)
⋮

𝛽(𝑞)

denotes vector of all parameters 

at all levels
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Static hierarchical model: formal 

statement
• Simplified version of Sundt’s (1980) model

– A parameter vector 𝛽𝑖0𝑖1…𝑖𝑚 is associated with 
node 𝑖0𝑖1… 𝑖𝑚 of the hierarchy

– The parameter 𝛽𝑖0 at the root of the tree is fixed

– For 𝑚 = 0,1,… , 𝑞 − 1, the parameter vector 
𝛽𝑖0𝑖1…𝑖𝑚𝑖𝑚+1

is a random drawing from some 
distribution determined by 𝛽𝑖0𝑖1…𝑖𝑚

– At each of the hierarchy’s leaves 𝑖0𝑖1… 𝑖𝑞 there 
exists a sample of observations 𝑦𝑖0𝑖1…𝑖𝑞𝑗 , 𝑗 = 1,2, …

drawn from some distribution determined by 
𝛽𝑖0𝑖1…𝑖𝑞
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Static hierarchical model: formal 

statement (cont’d)
– The random parameters and observations are 

subject to the following dependency structure:
• 𝛽(𝑚) = 𝑊(𝑚−1)𝛽(𝑚−1)+𝜁(𝑚), 𝑚 = 1,…𝑞;

• 𝑦 = 𝑋𝛽(𝑞) + 𝜀;

where 𝑋 is a design matrix, 𝑊(𝑚−1) is some matrix 
(called a transmission matrix) compatible with the 
dimensions of 𝛽(𝑚−1) and 𝛽(𝑚), and  𝜁(𝑚), 𝜀 are random 
vectors, with 𝜀 independent of the 𝜁(𝑚), and

• 𝐸 𝜁 = 0, 𝐸 𝜀 = 0;

• 𝑉𝑎𝑟 𝜁 = Λ, 𝑉𝑎𝑟 𝜀 = 𝐻;

where 𝜁 is the vector obtained by stacking the 𝜁
(𝑚)
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Evolutionary hierarchical model: 

formal statement
• Consider a 𝑞-hierarchy ℋ, supplemented by 

parameters and observations that satisfy the following 
conditions.  At each time 𝑡 = 0,1,…:

– A parameter vector 𝛽𝑖0𝑖1…𝑖𝑚
𝑡 is associated with node 

𝑖0𝑖1… 𝑖𝑚 of the hierarchy.
– For 𝑚 = 0,1,… , 𝑞 − 1, the parameter vector 

𝛽𝑖0𝑖1…𝑖𝑚𝑖𝑚+1

𝑡 is a random drawing from some 
distribution determined by 𝛽𝑖0𝑖1…𝑖𝑚

𝑡 .

– At each of the hierarchy’s terminal nodes 𝑖0𝑖1… 𝑖𝑞
there exists a sample of observations 𝑦𝑖0𝑖1…𝑖𝑞𝑗

𝑡 , 𝑗 =
1,2,… drawn from some distribution determined by 
𝛽𝑖0𝑖1…𝑖𝑞
𝑡 .
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Evolutionary hierarchical model: 

formal statement (cont’d)
– The observations are subject to the following 

dependency on parameters:

𝑦𝑡 = 𝑋𝑡𝛽(𝑞)
𝑡 + 𝜀𝑡,

where 𝑋𝑡 is a design matrix, 𝜀𝑡 is a random vector, 

and

𝐸 𝜀𝑡 = 0, 𝑉𝑎𝑟 𝜀𝑡 = 𝐻𝑡.

– The parameter vector 𝛽𝑡 evolves over time as 

follows.  Define 𝛾(0)
𝑡 = 𝛽(0)

𝑡 and 𝛾(𝑚)
𝑡 = 𝛽(𝑚)

𝑡 −

𝑊𝑚−1 𝛽 𝑚−1
𝑡 , 𝑚 = 1,… , 𝑞
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Evolutionary hierarchical model: 

formal statement (cont’d)
Assume that:

– The parameter vector 𝛽0 at 𝑡 = 0 is random with known 

𝐸 𝛽0 , 𝑉𝑎𝑟 𝛽0

– The parameters 𝛾(𝑚)
𝑡 evolve according to:

𝛾(𝑚)
𝑡 = 𝛾(𝑚)

𝑡−1+𝜁(𝑚)
𝑡 , 𝑚 = 0,… 𝑞; 𝑡 = 1,2, …,

where 𝜁(𝑚)
𝑡 is a random vector, and

𝐸 𝜁𝑡 = 0, 𝑉𝑎𝑟 𝜁𝑡 = Λ𝑡,

and where 𝜁
𝑡

is the vector obtained by stacking the 𝜁
(𝑚)

𝑡
and 

all 𝜁
𝑡
, 𝜀

𝑡
, 𝑡 = 0,1,2, … are mutually independent.
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Alternative form of model
Original model

𝑦𝑡 = 𝑋𝑡𝛽(𝑞)
𝑡 + 𝜀𝑡

Alternative statement

𝑦𝑡 = 𝑈𝑡𝛾𝑡 + 𝜀𝑡

where

𝑈𝑡 =[𝑋𝑡𝑊 0:𝑞 𝑋𝑡𝑊 1:𝑞 …

𝑋𝑡𝑊 𝑞:𝑞 ]

and 
𝑊𝑚:𝑚+𝑝

= 𝑊𝑚+𝑝−1 𝑊𝑚+𝑝−2 …𝑊𝑚
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Kalman filter (slightly simplified): 

model formulation
• At each 𝑡 = 0,1,…

– Observation (or measurement) equation

𝑦𝑡 = 𝑈𝑡𝛾𝑡 + 𝜀𝑡

– System (or transition) equation

𝛾𝑡 = 𝛾𝑡−1 + 𝜁𝑡 , 𝑡 = 1,2, …
• The parameter vector 𝛾0 at 𝑡 = 0 is random with known 

𝐸 𝛾0 , 𝑉𝑎𝑟 𝛾0

• 𝜀𝑡~𝑁 0,𝐻𝑡 , 𝜁𝑡~𝑁 0, Λ𝑡 , with all 𝜁𝑡 , 𝜀𝑡 , 𝑡 = 0,1,2,… are 
mutually independent
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Kalman filter: parameter 

estimation algorithm
• Let 𝛾𝑡|𝑠 and 𝑃𝑡|𝑠 denote the estimators of 𝛾𝑡 , 𝑉𝑎𝑟 𝛾𝑡 − 𝛾𝑡|𝑠

given data 𝑦0, 𝑦1, … , 𝑦𝑠 .  The filter comprises the following 
procedure for each 𝑡 = 1,2,…:

1) Commence with estimate 𝛾𝑡|𝑡−1 and covariance matrix 
𝑃𝑡|𝑡−1 of the same dimension

2) Calculate 𝐹𝑡 = 𝑈𝑡𝑃𝑡|𝑡−1 𝑈𝑡 𝑇 + 𝐻𝑡

3) Calculate 𝐾𝑡 = 𝑃𝑡|𝑡−1 𝑈𝑡 𝑇 𝐹𝑡 −1, called the Kalman gain 
matrix

4) Update the matrix 𝑃𝑡|𝑡−1 as follows:

𝑃𝑡+1|𝑡 = 𝑃𝑡|𝑡−1 − 𝑃𝑡|𝑡−1 𝑈𝑡 𝑇 𝐹𝑡 −1𝑈𝑡𝑃𝑡|𝑡−1 + Λ𝑡

5) Update the estimate 𝛾𝑡|𝑡−1 as follows:  𝛾𝑡|𝑡 = 𝛾𝑡|𝑡−1 +
𝐾𝑡 𝑦𝑡 − 𝑈𝑡𝛾𝑡|𝑡−1

6) Further update 𝛾𝑡|𝑡 as follows:  𝛾𝑡+1|𝑡 = 𝛾𝑡|𝑡
Credibility type of 

estimator
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Comparison of evolutionary 

hierarchical and Kalman filter 

models
Evolutionary hierarchical model

𝑦𝑡 = 𝑈𝑡𝛾𝑡 + 𝜀𝑡

𝛾(𝑚)
𝑡 = 𝛾(𝑚)

𝑡−1 +𝜁(𝑚)
𝑡

Kalman filter model
𝑦𝑡 = 𝑈𝑡𝛾𝑡 + 𝜀𝑡

𝛾𝑡 = 𝛾𝑡−1 + 𝜁𝑡

• So Kalman filter can be applied to estimate 𝛾𝑡 for 
each 𝑡

• i.e. 𝛽𝑡 for each 𝑡
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Numerical example: definition 

of hierarchy
• Level 0: Single 

node {1}

• Level 1: Nodes 
{11,12,13}

• Level 2: Nodes 
{111,112,121,122,
123,124,131,132,
133,134}

111 112 121 122 123 124 131 133 134132

• 𝑦𝑖0𝑖1𝑖2
𝑡 , claim frequencies per unit 

exposure (𝐸𝑖0𝑖1𝑖2
𝑡 ) observed at the 

leaves
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Numerical example: model 

structure
• Dependency of observations on parameters

𝒚𝒕 = 𝑿𝒕𝜷(𝟐)
𝒕 + 𝜺𝒕 with 𝑿𝒕 = 𝐈

i.e. 𝑬 𝒚𝒊𝟎𝒊𝟏𝒊𝟐
𝒕 = 𝜷𝒊𝟎𝒊𝟏𝒊𝟐

𝒕

• Dependencies between levels of hierarchy

𝑾(𝒎) = 𝚪 𝓗𝒎
𝑻, i.e. 𝑬 𝜷𝒊𝟎…𝒊𝒎+𝟏

𝒕 = 𝜷𝒊𝟎…𝒊𝒎
𝒕

• Variances and covariances

𝑽𝒂𝒓 𝒚𝒊𝟎𝒊𝟏𝒊𝟐
𝒕 = ൗ𝜷𝒊𝟎𝒊𝟏𝒊𝟐

𝒕 𝑬𝒊𝟎𝒊𝟏𝒊𝟐
𝒕

– Covariance matrices Λ𝑡 , 𝐻𝑡 diagonal
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Numerical example: true 

parameters
Node Initial values (𝜷𝟎) Parameter 

variance (Λ𝑡) Mean Variance 

    

1   0.070 0.00005 0.00005 

11 0.025 0.00003 0.00001 

12 0.100 0.00030 0.00005 

13 0.150 0.00070 0.00015 

111 0.010 0.00002 0.00001 

112 0.035 0.00015 0.00002 

121 0.050 0.00040 0.00004 

122 0.080 0.00090 0.00010 

123 0.100 0.00150 0.00015 

124 0.120 0.00250 0.00025 

131 0.135 0.00300 0.00030 

132 0.155 0.00400 0.00040 

133 0.180 0.00500 0.00050 

134 0.200 0.00650 0.00070 
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Numerical example: simulated 

data
• All nodes trendless 

except:
– Node 121:

upward trend of 
0.015 per period 
added

– Node 124: flat 
reduction of 0.040 
made in each 
period

– Node 132:
downward trend 
of 0.020 per 
period added

Node Exposure 

(𝑬𝒊𝟎𝒊𝟏…𝒊𝒒
𝒕 ) 

Observed claim frequency at 𝒕 = 

1 2 3 

     

111 40 0.007 0.013 0.007 

112 35 0.030 0.038 0.043 

121 300 0.062 0.094 0.097 

122 100 0.081 0.088 0.079 

123 500 0.120 0.064 0.136 

124 100 0.093 0.053 0.081 

131 301 0.150 0.143 0.132 

132 50 0.172 0.136 0.093 

133 25 0.111 0.188 0.094 

134 20 0.248 0.171 0.195 
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Numerical example: results (1)
• Node 121: increasing trend in true frequency
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Numerical example: results (2)
• Node 124: one-off downward 

shift in true frequency at 𝑡 = 1
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Numerical example: results (3)
• Node 132: decreasing trend in true 

frequency
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Conclusion
• Evolutionary hierarchical model has been formulated

• Parameter estimates obtained by application of the Kalman filter 

– Filter updates estimates from one epoch to the next as further data are 

observed

• Application of the Kalman filter conceptually straightforward, but

– Tree structure of the model parameters can be extensive

– Some effort is required to retain organization of the updating algorithm

– Achieved by suitable manipulation of the adjacency matrix associated with 

the tree

– Adjacency matrix then recruited to play its role in Kalman filter matrix 

calculations
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Questions?
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