

Pricing tree structures with shifting parameters

Greg Taylor UNSW Business School

Insights, 23 November 2017

Acknowledgements and disclaimers

- Principal financial support for this research provided by a grant from the Australian Actuaries Institute
- Also supported under Australian Research Council's Linkage Projects funding scheme (project number LP130100723)
- The views expressed herein are those of the author and are not necessarily those of either supporting body

- Motivation
- Formal framework
- Hierarchical models
 - Static
 - Evolutionary
- Kalman filter
 - In general
 - Application to hierarchical model
- Numerical example
- Conclusion

Motivation

- Formal framework
- Hierarchical models
 - Static
 - Evolutionary
- Kalman filter
 - In general
 - Application to hierarchical model
- Numerical example
- Conclusion

Motivation: hierarchies (1)

 What is a hierarchy?

Motivation: hierarchies (2)

- Example: the ANZSIC occupational codes
 - A = Agriculture, Forestry and Fishing
 - A1 = Agriculture
 - A2 = Aquaculture
 - B = Mining
 - B6 = Coal mining
 - B7 = Oil and gas extraction
 - B8 = Metal ore mining

Motivation: hierarchies (3)

- There may be an observation at each node
 - e.g. claim frequency
- One may wish to estimate the claim frequency parameters underlying these observations
- One can use hierarchical credibility
 - Taylor (1979)
 - Sundt (1979,1980)

Motivation: static versus evolutionary hierarchies

- Suppose that claim frequencies at the node evolve over time
- Now a parameter estimate is required at each node at each point of time
- A1 A2

Α

R

Hom5

- Motivation
- Formal framework
- Hierarchical models
 - Static
 - Evolutionary
- Kalman filter
 - In general
 - Application to hierarchical model
- Numerical example
- Conclusion

Graph theory (1)

• A graph \mathcal{H} is an ordered pair $(V(\mathcal{H}), E(\mathcal{H}))$ consisting of a set $V(\mathcal{H})$ of vertices, or **nodes**, and a set $E(\mathcal{H})$, disjoint from $V(\mathcal{H})$, of edges, together with an **incidence matrix** $\Psi(\mathcal{H})$ that associates with each edge of \mathcal{H} an unordered pair of (not necessarily distinct) nodes of \mathcal{H} .

Graph theory (2)

• Incidence matrix

Example

Node	\wedge	Edge				
	(1)	2	3	4	5	6
1	1	1	0	0	0	0
2	1	0	1	0	0	0
3	0	1	1	1	1	0
4	0	0	0	1	0	0
5	0	0	0	0	1	1
6	0	0	0	0	0	1

- Edge 1 is incident with nodes 1 and 2

Graph theory (3)

Adjacency matrix

 Indicates, for each node, which nodes are adjacent, i.e. related by a single edge

Node	Node					
	1	2	3	4	5	6
1	0	1	1	0	0	0
2	1	0	1	0	0	0
3	1	1	0	1	1	0
4	0	0	1	0	0	0
5	0	0	1	0	0	1
6	0	0	0	0	1	0

Graph theory: tree

Example

- A tree is special case of a graph in which any two nodes are connected by exactly one path
- A hierarchy is the same as a tree

Adjacency matrix for tree

- Graph is now **directed**
- Denote $\Gamma(\mathcal{H})$

	A1	A2	B6	B7	B8
 Α	1	1	0	0	0
В	0	0	1	1	1

Denote $\Gamma(\mathcal{H}_2)$ where \mathcal{H}_2 is the sub-hierarchy consisting of just levels 1 and 2 B

B6

A2

A1

B8

B7

Larger hierarchies (trees): labelling of nodes

• This hierarchy consists of a root (labelled $i_0 = 1$) and q levels

– This a *q*-hierarchy

• Nodes at level mare labelled $i_0i_1 \dots i_{m-1}i_m, i_n =$ 1,2, etc., n = $1,2, \dots, m$

- Motivation
- Formal framework
- Hierarchical models
 - Static
 - Evolutionary
- Kalman filter
 - In general
 - Application to hierarchical model
- Numerical example
- Conclusion

Actuaries Hierarchical model: notation

- Associate a parameter vector with each node
 - Parameter vector at node $i_0 i_1 \dots i_{m-1} i_m$ denoted $\beta_{i_0 i_1 \dots i_m}$

$$- \beta_{(m)} = \begin{bmatrix} \beta_{i_0 i_1 \dots i_{m-1} 1} \\ \beta_{i_0 i_1 \dots i_{m-1} 2} \\ \vdots \end{bmatrix} \text{denotes vector of all}$$
parameters at level m

$$- \beta = \begin{bmatrix} \beta_{(0)} \\ \beta_{(1)} \\ \vdots \\ \beta_{(q)} \end{bmatrix}$$
 denotes vector of all parameters
at all levels

Static hierarchical model: formal statement

- Simplified version of Sundt's (1980) model
 - A parameter vector $\beta_{i_0i_1...i_m}$ is associated with node $i_0i_1...i_m$ of the hierarchy
 - The parameter β_{i_0} at the root of the tree is fixed
 - For m = 0, 1, ..., q 1, the parameter vector $\beta_{i_0 i_1 ... i_m i_{m+1}}$ is a random drawing from some distribution determined by $\beta_{i_0 i_1 ... i_m}$
 - At each of the hierarchy's leaves $i_0i_1 \dots i_q$ there exists a sample of observations $y_{i_0i_1\dots i_qj}$, $j = 1, 2, \dots$ drawn from some distribution determined by $\beta_{i_0i_1\dots i_q}$

Static hierarchical model: formal statement (cont'd)

- The random parameters and observations are subject to the following dependency structure:

•
$$\beta_{(m)} = W_{(m-1)}\beta_{(m-1)} + \zeta_{(m)}, m = 1, ... q;$$

•
$$y = X\beta_{(q)} + \varepsilon;$$

where X is a design matrix, $W_{(m-1)}$ is some matrix (called a **transmission matrix**) compatible with the dimensions of $\beta_{(m-1)}$ and $\beta_{(m)}$, and $\zeta_{(m)}$, ε are random vectors, with ε independent of the $\zeta_{(m)}$, and

- $E[\zeta] = 0, E[\varepsilon] = 0;$
- $Var[\zeta] = \Lambda, Var[\varepsilon] = H;$

where ζ is the vector obtained by stacking the $\zeta_{(m)}$

- Motivation
- Formal framework
- Hierarchical models
 - Static
 - Evolutionary
- Kalman filter
 - In general
 - Application to hierarchical model
- Numerical example
- Conclusion

Evolutionary hierarchical model: formal statement

- Consider a q-hierarchy \mathcal{H} , supplemented by parameters and observations that satisfy the following conditions. At each time t = 0, 1, ...:
 - A parameter vector $\beta_{i_0i_1...i_m}^t$ is associated with node $i_0i_1...i_m$ of the hierarchy.
 - For m = 0, 1, ..., q 1, the parameter vector $\beta_{i_0 i_1 ... i_m i_{m+1}}^t$ is a random drawing from some distribution determined by $\beta_{i_0 i_1 ... i_m}^t$.
 - At each of the hierarchy's terminal nodes $i_0i_1 \dots i_q$ there exists a sample of observations $y_{i_0i_1\dots i_qj}^t$, $j = 1, 2, \dots$ drawn from some distribution determined by $\beta_{i_0i_1\dots i_q}^t$.

Evolutionary hierarchical model: formal statement (cont'd)

- The observations are subject to the following dependency on parameters:

$$y^t = X^t \beta_{(q)}^t + \varepsilon^t,$$

where X^t is a design matrix, ε^t is a random vector, and

$$E[\varepsilon^t] = 0, Var[\varepsilon^t] = H^t.$$

- The parameter vector β^t evolves over time as follows. Define $\gamma_{(0)}^t = \beta_{(0)}^t$ and $\gamma_{(m)}^t = \beta_{(m)}^t - W_{(m-1)}\beta_{(m-1)}^t$, m = 1, ..., q

Evolutionary hierarchical model: formal statement (cont'd)

- Assume that:
- The parameter vector β^0 at t = 0 is random with known $E[\beta^0], Var[\beta^0]$
- The parameters $\gamma_{(m)}^t$ evolve according to:

$$\gamma_{(m)}^t = \gamma_{(m)}^{t-1} + \zeta_{(m)}^t, m = 0, \dots q; t = 1, 2, \dots,$$

where $\zeta_{(m)}^{t}$ is a random vector, and

 $E[\zeta^t] = 0, Var[\zeta^t] = \Lambda^t,$

and where ζ^{t} is the vector obtained by stacking the $\zeta^{t}_{(m)}$ and

all ζ^{t} , ε^{t} , t = 0,1,2,... are mutually independent.

Alternative form of model

$\frac{\text{Original model}}{y^t = X^t \beta_{(q)}^t + \varepsilon^t}$

Alternative statement

$$y^t = U^t \gamma^t + \varepsilon^t$$

where

$$U^{t} = \begin{bmatrix} X^{t} W_{(0:q)} & X^{t} W_{(1:q)} \\ & X^{t} W_{(q:q)} \end{bmatrix}$$

and

$$W_{(m:m+p)} = W_{(m+p-1)}W_{(m+p-2)}\dots W_{(m)}$$

- Motivation
- Formal framework
- Hierarchical models
 - Static
 - Evolutionary
- Kalman filter
 - In general
 - Application to hierarchical model
- Numerical example
- Conclusion

Kalman filter (slightly simplified): model formulation

- At each t = 0, 1, ...
 - Observation (or measurement) equation

$$y^t = U^t \gamma^t + \varepsilon^t$$

- System (or transition) equation

$$\gamma^{t} = \gamma^{t-1} + \zeta^{t}, t = 1, 2, ...$$

- The parameter vector γ^0 at t = 0 is random with known $E[\gamma^0], Var[\gamma^0]$
- $\varepsilon^t \sim N(0, H^t), \zeta^t \sim N(0, \Lambda^t)$, with all $\zeta^t, \varepsilon^t, t = 0, 1, 2, ...$ are mutually independent

Kalman filter: parameter estimation algorithm

- Let $\gamma^{t|s}$ and $P^{t|s}$ denote the estimators of γ^t , $Var[\gamma^t \gamma^{t|s}]$ given data $\{y^0, y^1, \dots, y^s\}$. The filter comprises the following procedure for each t = 1, 2, ...:
 - 1) Commence with estimate $\gamma^{t|t-1}$ and covariance matrix $P^{t|t-1}$ of the same dimension
 - 2) Calculate $F^t = U^t P^{t|t-1} (U^t)^T + H^t$
 - 3) Calculate $K^t = P^{t|t-1}(U^t)^T (F^t)^{-1}$, called the Kalman gain matrix

4) Update the matrix
$$P^{t|t-1}$$
 as follows:
 $P^{t+1|t} = P^{t|t-1} - P^{t|t-1}(U^t)^T (F^t)^{-1} U^t P^{t|t-1} + \Lambda^t$

- 5) Update the estimate $\gamma^{t|t-1}$ as follows: $\gamma^{t|t} = \gamma^{t|t-1} +$ $K^t(\gamma^t - U^t\gamma^{t|t-1}) \blacktriangleleft$
- 6) Further update $\gamma^{t|t}$ as follows: $\gamma^{t+1|t} = \gamma^{t|t}$ estimator

- Motivation
- Formal framework
- Hierarchical models
 - Static
 - Evolutionary
- Kalman filter
 - In general
 - Application to hierarchical model
- Numerical example
- Conclusion

Comparison of evolutionary hierarchical and Kalman filter models

Evolutionary hierarchical model $y^t = U^t \gamma^t + \varepsilon^t$

 $\gamma_{(m)}^{t} = \gamma_{(m)}^{t-1} + \zeta_{(m)}^{t}$

 $\frac{\text{Kalman filter model}}{y^t = U^t \gamma^t + \varepsilon^t}$ $\gamma^t = \gamma^{t-1} + \zeta^t$

- So Kalman filter can be applied to estimate γ^t for each t
 - i.e. β^t for each t

- Motivation
- Formal framework
- Hierarchical models
 - Static
 - Evolutionary
- Kalman filter
 - In general
 - Application to hierarchical model
- Numerical example
- Conclusion

Numerical example: definition of hierarchy

- Level 0: Single node {1}
- Level 1: Nodes {11,12,13}
- Level 2: Nodes
 {111,112,121,122, 123,124,131,132, 133,134}

111 112 121 122 123 124 131 132 133 134

• $y_{i_0i_1i_2}^t$, claim frequencies per unit exposure $(E_{i_0i_1i_2}^t)$ observed at the leaves

Numerical example: model structure

• Dependency of observations on parameters

 $y^t = X^t \beta_{(2)}^t + \varepsilon^t$ with $X^t = I$ i.e. $E[y_{i_0i_1i_2}^t] = \beta_{i_0i_1i_2}^t$

- Dependencies between levels of hierarchy $W = [\Gamma(qt)]^T i \circ F[qt] = qt$
 - $W_{(m)} = [\Gamma(\mathcal{H}_m)]^T, \text{ i.e. } E[\beta_{i_0\dots i_{m+1}}^t] = \beta_{i_0\dots i_m}^t$
- Variances and covariances

$$Var[y_{i_0i_1i_2}^t] = \beta_{i_0i_1i_2}^t / E_{i_0i_1i_2}^t$$

- Covariance matrices Λ^t , H^t diagonal

Numerical example: true parameters

Node	Initial va	alues (β ⁰)	Parameter
	Mean	Variance	variance (Λ^t)
1	0.070	0.00005	0.00005
11	0.025	0.00003	0.00001
12	0.100	0.00030	0.00005
13	0.150	0.00070	0.00015
111	0.010	0.00002	0.00001
112	0.035	0.00015	0.00002
121	0.050	0.00040	0.00004
122	0.080	0.00090	0.00010
123	0.100	0.00150	0.00015
124	0.120	0.00250	0.00025
131	0.135	0.00300	0.00030
132	0.155	0.00400	0.00040
133	0.180	0.00500	0.00050
134	0.200	0.00650	0.00070

Numerical example: simulated data

Node	Exposure	Observed claim frequency at $t =$			
	$(\boldsymbol{E}_{i_0i_1\ldots i_q}^t)$	1	2	3	
	10	=			
111	40	0.007	0.013	0.007	
112	35	0.030	0.038	0.043	
121	300	0.062	0.094	0.097	
122	100	0.081	0.088	0.079	
123	500	0.120	0.064	0.136	
124	100	0.093	0.053	0.081	
131	301	0.150	0.143	0.132	
132	50	0.172	0.136	0.093	
133	25	0.111	0.188	0.094	
134	20	0.248	0.171	0.195	

- All nodes trendless except:
 - Node 121: upward trend of 0.015 per period added
 - Node 124: flat reduction of 0.040 made in each period
 - Node 132: downward trend of 0.020 per period added

Numerical example: results (1) Node 121: increasing trend in true frequency

Numerical example: results (2)

• Node 124: one-off downward shift in true frequency at t = 1

Numerical example: results (3)

Node 132: decreasing trend in true frequency

- Motivation
- Formal framework
- Hierarchical models
 - Static
 - Evolutionary
- Kalman filter
 - In general
 - Application to hierarchical model
- Numerical example
- Conclusion

Conclusion

- Evolutionary hierarchical model has been formulated
- Parameter estimates obtained by application of the Kalman filter
 - Filter updates estimates from one epoch to the next as further data are observed
- Application of the Kalman filter conceptually straightforward, but
 - Tree structure of the model parameters can be extensive
 - Some effort is required to retain organization of the updating algorithm
 - Achieved by suitable manipulation of the adjacency matrix associated with the tree
 - Adjacency matrix then recruited to play its role in Kalman filter matrix calculations

References

- Sundt B (1979). A hierarchical credibility regression model. **Scandinavian Actuarial Journal**, 107-114.
- Sundt B (1980). A multi-level hierarchical credibility regression model. Scandinavian Actuarial Journal, 25-32.
- Taylor G C (1979). Credibility analysis of a general hierarchical model, Scandinavian Actuarial Journal, 1979(1), 1-12.

Questions?

