Managing physical climate risk:

What data are available?

Australian Government Bureau of Meteorology

What data are available?

Raw data

The Bureau has a wealth of digitised station-based observational data in its national climate database.

- Historic records have been digitised at the monthly and daily timescale. Modern sensor records at 1-minute intervals.
- A large amount of data are available to the general public
- There is more data (additional variables, sub-daily observations) available for research and applications

Analysed data

The 'raw' observational data are spatially and temporally heterogeneous.

Downstream products spatially analysed onto grids:

- daily surface temperature (maximum and minimum)
- daily rainfall
- daily solar (satellite)
- daily vapour pressure (9am and 3pm)
- monthly satellite vegetation index
- soil moisture
- frost

•

- cloud
- evaporation
- sunshine hours
- wind
- lightning
- UV
- fire weather indices

Temporally homogeneous:

- surface temperature
- upper air temperature
- total cloud
- pan evaporation

Global domains

- sea surface temperature
- sub-surface ocean
- sea level

Reanalysis data

•

- **Best estimate historical fields.** Four dimensions (latitude, longitude, height, time)
- A full description of the atmosphere.
 Produced by optimally combining
 observations with a numerical weather
 model
- Use of standardised methods. The model is run in hindcast (retrospective), with the data from all sources, and all times, assimilated into the model in a standard way.
- Temporal consistency in data.
 Consistency of methods leads to consistency in the data so that the data is suited for defining climatology, anomalies, trends, and extreme event likelihood.

28 February 2014 — 10m zonal wind

Reanalysis data

- Incorporates real physics rather than empirical relationships
- Includes high-resolution topographic effects (hills, valleys, coastlines).
- Captures variations in land use (urban, veg), and soils.
- Leads to greater precision and (hopefully) greater accuracy in representations of temperature, rainfall, humidity, wind — and extremes of these variables.
- Better representation of convective systems, storms and catchment-based rainfall totals.
- Better representation of the timing of changes in weather

Other relevant data

Geosciences Australia provides:

- National datasets for the probability/severity distribution of natural hazards: earthquake, tsunami and tropical cyclone, as well as seismic sources
- Access to flood study information from across Australia
- Vulnerability models for the built environment, linking hazard severity to damage in residential housing and other infrastructure
- Information resources on the effectiveness of mitigation and adaptation options
- Real-time monitoring data for earthquakes and bushfires
- Nationally consistent datasets characterising the built environment (NEXIS)

Extreme events

J°C

The confluence of trends and extremes — a cumulative risk case study from Tasmania 2015-2016

Tea Tree, north of Hobart, Tasmania, October 6. Source ABC News: Edith Bevin

Spring mean temperature anomalies

Spring is getting warmer with an accompanying increase in fire danger

Extreme events

Tasmania in October 2015 — record heat — record low rainfall — record high fire danger

Tea Tree, north of Hobart, Tasmania, October 6. Source ABC News: Edith Bevin

October 2015 Forest Fire Danger Index

Extreme events

South Esk River Hadspen, Tasmania, 8 June 2016. Source Catherine Jolly, BoM

Sea surface temperatures during May 2016

May 2016

Tasman Sea May sea surface temperature anomalies

Extreme events

Collaroy Beach, NSW, 6 June 2016

Cataract Gorge, Tasmania, 7 June 2016

MSLP and cloud, 5 June 2016

South Esk River, Hadspen, Tasmania, 8 June 2016. Source: Catherine Jolly

The confluence of trends and natural variability

Plausible cumulative risk scenarios for 'stress testing'

Australian Government Bureau of Meteorology

Sea surface temperatures during the northern monsoon

—10-vear mean

2000

1980

2015-2016 monsoon season

2013-2014

Degree Heating Days (DHD) are the accumulation (sum) of positive SST anomaly values over the summer (1 December to 31 March).

IMOS 14-Day Mosaic: DHD

0 10 20 30 40 50 60 70 80 90 100 110 20 130 140 150 160 ¹⁰CO2070 Created: 25-March-2017 04-38 33
¹⁰Country Level ≥ 3 © Bureau of Meteorology 2017

2014-2015

IMOS 14-Day Mosaic: DHD

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140
 150
 160

 I/070C070 Created: 13-january-2017
 07:44:59
 °C
 Buresu of Meteorology 2017
 °
 8
 °
 Buresu of Meteorology 2017

2015-2016

IMOS 14-Day Mosaic: DHD 31 March 2017 GBR region

0	10	20	30	40	50	60	70	80	90	100 110	120	130	140	150	160
IDYOC070 °C Days									Quality Level ≥ 3						
Created: 06-April-2017 05:15:22									© Bureau of Meteorology 2017						

2017-2018

Its important to note that, in terms of magnitude, we have already experienced events that are record-breaking. It is straightforward to place those events in an extreme but plausible climatological and meteorological sequence and setting

What is the likelihood that we will get three years like this in a row?

Townsy

10 am Mar 8

4 am Mar 12

10 am Mar 10 (4) 2 10 am Mar 11

10 am Mai

Rundahen

Rockhamptor

Thank you

