A ‘Simple’ Stochastic Model for Longevity Risk revisited through Bootstrap

Xu Shi
Bridget Browne

© Xu Shi, Bridget Browne

This presentation has been prepared for the Actuaries Institute 2015 Actuaries Summit. The Institute Council wishes it to be understood that opinions put forward herein are not necessarily those of the Institute and the Council is not responsible for those opinions.
Projecting Australian Mortality using the CMI Mortality Projections Model

Chen Tang, Bridget Browne, Aaron Bruhn

© Chen Tang, Bridget Browne, Aaron Bruhn
Results - Males
Future work

Major limitation: deterministic
Next step: range of outcomes
Why does the issue arise?

• UK’s CMI method is deterministic
• How to determine percentiles for
 – Pricing
 – Reserving
 – Internal capital modelling
 – Of longevity risk in annuity portfolio?
• How to incorporate prudence or conservatism with quantification?
The Original Model (Koller 2011)

Sample paths of C_t

Sample paths of annuity payments
The Original Model (Koller 2011)

\[\hat{q}_{x,t} = q_{x,t} \times C_t + \varepsilon_{x,t} \]

\[C_t = e^{X_t} \times C_{t-1} \]

\[C_0 = 1 \]
The Original Model (Koller 2011)

$$(X_t)_{t \in \mathbb{N}_0}, \text{iid } N(\mu, \sigma^2)$$

$$(e^{X_t})_{t \in \mathbb{N}_0}, \text{iid lognormal}$$

$$\mathbb{E}[e^{X_t}] = 1$$, is imposed, so that best estimate is followed

$$\mathbb{E}[e^{X_t}] = e^{\mu + 0.5\sigma^2}$$, follows from above
The Original Model (Koller 2011)

Sample paths of C_t

Sample paths of annuity payments
Modifications

• What if X_t is not normal?
• Transformation - rejected
• Non-parametric approach – bootstrap
• Improved model selection
• Consider X rather than X_t
A numerical example

- Australian Females
- Human Mortality Database
- Ages 55 to 89 inclusive
- 1954 to 2008
- Surface of 35 ages and 55 cal. years
Crude Mortality Improvement Rates
Histogram of Crude MI Rates
Model assessment

• Use smoothing models only to help determine our best estimate of future variability

• M1-M8 from LifeMetrics (JP Morgan)
 – Standardised residuals and BIC
 – Forecasting properties
QQ Plots
<table>
<thead>
<tr>
<th>Model</th>
<th>Mean</th>
<th>Variance</th>
<th>Skewness</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.000606</td>
<td>1.489723</td>
<td>-0.087587</td>
<td>-10 152</td>
</tr>
<tr>
<td>2</td>
<td>0.007536</td>
<td>1.088392</td>
<td>0.134849</td>
<td>-10 192</td>
</tr>
<tr>
<td>3</td>
<td>-0.003997</td>
<td>2.028962</td>
<td>-0.085894</td>
<td>- 10 917</td>
</tr>
<tr>
<td>4</td>
<td>-0.019290</td>
<td>2.078517</td>
<td>0.172425</td>
<td>2 136</td>
</tr>
<tr>
<td>5</td>
<td>0.166069</td>
<td>3.876925</td>
<td>0.139640</td>
<td>-12 399</td>
</tr>
<tr>
<td>6</td>
<td>0.034808</td>
<td>1.842268</td>
<td>2.350169</td>
<td>-10 309</td>
</tr>
<tr>
<td>7</td>
<td>-0.005507</td>
<td>1.496240</td>
<td>-1.015056</td>
<td>-10 397</td>
</tr>
<tr>
<td>8</td>
<td>0.020308</td>
<td>1.582045</td>
<td>1.035231</td>
<td>-10 297</td>
</tr>
</tbody>
</table>
Forecasting properties

- Now choosing between M2 and M3
- M2 unstable
- Backtesting for M3
Prediction Intervals I
Prediction Intervals II
QQ Plot of X_t for M3 Australian Females
Age dependence or independence?

• P-values of two-variable regression of X against age (x) and year (t)

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Variable</th>
<th>ANOVA p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Case</td>
<td>Year</td>
<td>0.1079</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>0.8350</td>
</tr>
<tr>
<td>Discrete Case</td>
<td>Year</td>
<td>0.9965</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>0.9999</td>
</tr>
</tbody>
</table>
Paths of $C_t, q_{65,t}$ for Australian Females
Fan plots of Ct, q65,t for Australian Females
Aust Females
(Age Independent Case, X)

Histogram (LHS) of $a_{65 \mid 31}$ (at 4% pa) and cohort survival curves (RHS)
Aust Females
(Age Dependent Case, X_t)

Histogram (LHS) of $a_{65:31}$ (at 4% pa) and cohort survival curves (RHS)
Paths of cohort survival curves for a 65:[31] for Australian Females (Two Cases)
Age independence => coherence?

- Example of crossover in Crude Mortality Rates for Australian Females (red cell indicates mortality in year t is greater for age x than for age $x+1$)
Age independence => coherence?

- Example of crossover in one simulation for Australian Females
 (red cell indicates mortality in year t is greater for age x than for age x+1)
Comparison with other methods

• Tickle and Booth (2014) evaluated and updated a forecast of mortality for Australian seniors using the Booth-Maindonald-Smith variant of Lee-Carter (generously shared underlying work)
 – Central estimate and 80% PI for $q_{x,t}$

• LPS 115 Section 38 (APRA, 2013, p7)
 – 20% drop in $q_{x,t}$
 – $< 0.5\%$ probability actual claims exceed
Forecast mortality rates for Australian Females aged 65, central estimate & selected percentiles
Paths of cohort survival curves (ie cashflows) for Australian Females, central estimate, APRA basis and 99.5th percentiles for both cases
Comparison of Cohort Life Expectancy & Annuity Values (at 4% pa) for Aust. Females aged 65 in 2010, central estimate & selected percentiles

<table>
<thead>
<tr>
<th></th>
<th>e65[31],2010</th>
<th>% diff</th>
<th>a65[31],2010</th>
<th>% diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central estimate (here, Tickle & Booth)</td>
<td>22.668</td>
<td></td>
<td>14.166</td>
<td></td>
</tr>
<tr>
<td>APRA 20% drop (99.5th percentile)</td>
<td>23.655</td>
<td>4.35%</td>
<td>14.610</td>
<td>3.14%</td>
</tr>
<tr>
<td>Bootstrap, Age independent, X (10th percentile)</td>
<td>22.287</td>
<td>-1.68%</td>
<td>14.019</td>
<td>-1.03%</td>
</tr>
<tr>
<td>Bootstrap, Age independent, X (90th percentile)</td>
<td>22.845</td>
<td>0.78%</td>
<td>14.254</td>
<td>0.62%</td>
</tr>
<tr>
<td>Bootstrap, Age independent, X (99.5th percentile)</td>
<td>23.102</td>
<td>1.91%</td>
<td>14.325</td>
<td>1.12%</td>
</tr>
<tr>
<td>Bootstrap, Age dependent, Xt (10th percentile)</td>
<td>21.415</td>
<td>-5.53%</td>
<td>13.636</td>
<td>-3.74%</td>
</tr>
<tr>
<td>Bootstrap, Age dependent, Xt (90th percentile)</td>
<td>23.817</td>
<td>5.07%</td>
<td>14.645</td>
<td>3.39%</td>
</tr>
<tr>
<td>Bootstrap, Age dependent, Xt (99.5th percentile)</td>
<td>24.912</td>
<td>9.90%</td>
<td>15.038</td>
<td>6.16%</td>
</tr>
</tbody>
</table>
Conclusion

• CMI method increasingly widely applied - UK, USA, Canada, Australia and China at least
• Some national statistics bodies also deterministic
 (ABS, 2013, ONS, 2013)
• This method allows the user to pragmatically add stochastic variation to a deterministic model
• Bootstrapping improves tail modelling
• Help to inform understanding of longevity risk
References